x/2=y/3=z/4 và z + 2x – 3y = -20

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{9}=\frac{z+2x-3y}{4+4-9}=\frac{-20}{-1}=20\)

\(\Rightarrow\frac{x}{2}=20\Rightarrow x=40\)

\(\frac{y}{3}=20\Rightarrow y=60\)

\(\frac{z}{4}=20\Rightarrow z=80\)

4 tháng 1 2022

\(\frac{x}{2}=\frac{2x}{4}\)(nhân tử và mẫu với 2)

\(\frac{y}{3}=\frac{3y}{9}\)(nhận tử và mẫu với 3)

10 tháng 10 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)

\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)

\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)

\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)

\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)

18 tháng 6 2021

a) A + x2 - 4xy2 + 2xz - 3y2 = 0

=> A =  -x2 + 4xy2 - 2xz + 3y2

b) B + 5x2 - 2xy = 6x2 + 9xy - y2

=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2

c) 3xy - 4y2 - A = x2 - 7xy + 8y2

=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2

18 tháng 6 2021

Trả lời:

a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0 

=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2

b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2 

=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2

c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2 

=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2

d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2 

27 tháng 6 2016

Q = x2  + y2  + z2  + x2 – y2  + z2  + x2   + y2  - z2

= x2 + x2  + x2  + y+ y2  - y2 + y2 + z2  + z- z2

= 3x2 + y+ z2

\(x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)

\(=x^2+x^2+x^2+y^2+y^2-y^2+z^2+z^2-z^2\)

\(=3x^2+y^2+z^2\)

22 tháng 7 2016

Áp dngj tính chất dãy các tỉ số bằng nhau. ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x+3y-z}{2.2+3.3-4}=\frac{50}{9}\)\(\frac{50}{9}\)

\(\frac{x-1}{2}=\frac{50}{9}\Rightarrow x-1=\frac{50}{9}.2=\frac{100}{9}\)

                                       \(x=\frac{100}{9}+1=\frac{109}{9}\)

\(\frac{y-2}{3}=\frac{50}{9}\Rightarrow y-2=\frac{50}{9}3=\frac{50}{3}\)

                                        \(y=\frac{50}{3}+2=\frac{56}{3}\)

\(\frac{z-3}{4}=\frac{50}{9}\Rightarrow z-3=\frac{50}{9}.4=\frac{200}{9}\)

                                        \(z=\frac{200}{9}+3=\frac{227}{9}\)      

Chúc bạn học tốt

\(\)

22 tháng 7 2016

cái đoạn có hai phân số \(\frac{50}{9}\)bạn bớt đi một cái nha cái đó mik ghi nhầm

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

16 tháng 12 2017

a,f(1/2)=5-2*(1/2)=5-1=4

   f(3)=5-2x3=5-6=-1

b,Với y=5 thì 5-2x=5

                    2x=5-5

                    2x=0

                    x=0:2=0

                   Vậy x=0

 Với y=-1 thì 5-2x=-1

                   2x=5-(-1)

                   2x=5+1

                   2x=6

                   x=6:2=3 

              Vậy x=3