Số nghiệm của phương trình : \(\left|x-2019\right|^{2022}+\left|x-2020\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

$b.b=ac\Rightarrow \frac{b}{c}=\frac{a}{b}$.
Đặt $\frac{b}{c}=\frac{a}{b}=k\Rightarrow b=ck; a=bk$.

Khi đó:

$\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(1)$

Và:

$\frac{(a+2011b)^2}{(b+2011c)^2}=\frac{(bk+2011b)^2}{(ck+2011c)^2}$

$=\frac{b^2(k+2011)^2}{c^2(k+2011)^2}=\frac{b^2}{c^2}=\frac{(ck)^2}{c^2}=k^2(2)$

Từ $(1);(2)$ ta có đpcm.

 

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.a/Chứng minh: tam giác ABM = tam giác ACM.b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.c/ Chứng minh: AM là tia phân giác của góc BAC.Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a/Chứng minh: tam giác ABM = tam giác ACM.

b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.

c/ Chứng minh: AM là tia phân giác của góc BAC.

Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. 

Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB lấy điểm D sao cho AD = AC. E là trung điểm của DC. Từ B vẽ BK vuông góc với CD. Chứng minh: AE // BK.

Bài 4: Cho góc nhọn xOy, Trên tia Ox, Oy lấy tương ứng hai điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy. Chứng minh:

a/ tam giác OMA = tam giác OMB và tam giác ONA = tam giác ONB.

b/ 3 điểm O, M, N thẳng hàng.

c/ tam giác AMN = tam giác BMN. 

d/ MN là tia phân giác của góc AMB.

Bài 5: Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a/ Chứng minh: ÄABE = ÄACD.

b/ Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.

c/ Giả sử góc DAE bằng 600, tính các góc còn lại của tam giác ADE.

d/ Chứng minh: AM vuông góc với BC.

Bài 6: Cho tam giác ABC. Vẽ đoạn thẳng AD vuông góc với AB (D và C nằm khác phía đối với AB) sao cho AD = AB. Vẽ đoạn thẳng AE vuông góc với AC (E và B nằm khác phía đối với AC) sao cho AE = AC. Biết DE = BC. Tính góc BAC.

Bài 7: Cho đoạn thẳng AB, điểm C cách đều hai điểm A và B, điểm D cách đều hai điểm A và B (C và D nằm khác phía đối với AB).

a/ Chứng minh: CD là tia phân giác của góc ACD.

b/ Kết quả câu a còn đúng không nếu C và D nằm cùng phía đối với AB?

chỉ cách giải các bài trên nhé, nhớ là KHÔNG chỉ đáp án nhé

p/s: có thể một số chỗ bị sai, mong những ai trả lời thông cảm

0
Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.a/Chứng minh: tam giác ABM = tam giác ACM.b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.c/ Chứng minh: AM là tia phân giác của góc BAC.Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a/Chứng minh: tam giác ABM = tam giác ACM.

b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.

c/ Chứng minh: AM là tia phân giác của góc BAC.

Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. 

Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB lấy điểm D sao cho AD = AC. E là trung điểm của DC. Từ B vẽ BK vuông góc với CD. Chứng minh: AE // BK.

Bài 4: Cho góc nhọn xOy, Trên tia Ox, Oy lấy tương ứng hai điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy. Chứng minh:

a/ tam giác OMA = tam giác OMB và tam giác ONA = tam giác ONB.

b/ 3 điểm O, M, N thẳng hàng.

c/ tam giác AMN = tam giác BMN. 

d/ MN là tia phân giác của góc AMB.

Bài 5: Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a/ Chứng minh: ÄABE = ÄACD.

b/ Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.

c/ Giả sử góc DAE bằng 600, tính các góc còn lại của tam giác ADE.

d/ Chứng minh: AM vuông góc với BC.

Bài 6: Cho tam giác ABC. Vẽ đoạn thẳng AD vuông góc với AB (D và C nằm khác phía đối với AB) sao cho AD = AB. Vẽ đoạn thẳng AE vuông góc với AC (E và B nằm khác phía đối với AC) sao cho AE = AC. Biết DE = BC. Tính góc BAC.

Bài 7: Cho đoạn thẳng AB, điểm C cách đều hai điểm A và B, điểm D cách đều hai điểm A và B (C và D nằm khác phía đối với AB).

a/ Chứng minh: CD là tia phân giác của góc ACD.

b/ Kết quả câu a còn đúng không nếu C và D nằm cùng phía đối với AB?

Chỉ cách giải nhé, KHÔNG phải bài giải

p/s: có thể một số chỗ sai, mong thông cảm

1
27 tháng 7 2021

cần gấp ạ

19 tháng 4 2016

Bài 2:

a)Ta có: 4100​=(22)100=2200

Do 2200<2202

Vậy 4100<2202

NM
8 tháng 11 2021

a. ta có : \(\frac{5}{-3}=\frac{15}{-9}=-\frac{15}{9}\)

b.\(-\frac{1}{5}< 0< \frac{1}{100}\Rightarrow-\frac{1}{5}< \frac{1}{100}\)

c.\(\hept{\begin{cases}2^3=8\\3^2=9\end{cases}\Rightarrow2^3< 3^2}\)

14 tháng 10 2018

\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)

\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)

\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)

\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)

\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)

\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)

Suy ra a = b =c =d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)