Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy Schwarz, BĐT AM - GM và BĐT \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\), ta có:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)}\)
\(\ge\dfrac{3^2}{3\sqrt[3]{a^3b^3c^3\left(b+c\right)\left(a+c\right)\left(a+b\right)}}\)
\(\ge\dfrac{3^2}{3\sqrt[3]{8abc}}=\dfrac{3}{2}\left(abc=1\right)\)
Dấu "=" xảy ra khi a = b = c = 1
Với mọi \(a,b,c\in R\) và \(x,y,z>0\) . ta có:
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\) (1)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Thật vậy, với \(a,b\in R\) và \(x,y>0\) ta có
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\) (2)
\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
Áp dụng BĐT (2) ta có
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)Dấu "=" xảy ra\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Ta có:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}=\dfrac{\dfrac{1}{a^2}}{ab+ac}+\dfrac{\dfrac{1}{b^2}}{bc+ab}+\dfrac{\dfrac{1}{c^2}}{ca+cb}\)Áp dụng BĐT (1) ta có:
\(\dfrac{\dfrac{1}{a^2}}{ab+ac}+\dfrac{\dfrac{1}{b^2}}{ab+bc}+\dfrac{\dfrac{1}{c^2}}{ac+bc}\ge\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\)(vì abc=1)
Hay \(\dfrac{\dfrac{1}{a^2}}{ab+bc}+\dfrac{\dfrac{1}{b^2}}{ab+bc}+\dfrac{\dfrac{1}{c^2}}{ac+bc}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)Mà \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\) nên \(\dfrac{\dfrac{1}{a^2}}{ab+ac}+\dfrac{\dfrac{1}{b^2}}{ab+bc}+\dfrac{\dfrac{1}{c^2}}{ac+bc}\ge\dfrac{3}{2}\Rightarrowđpcm\)
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
a) = 5( x2 - 9y2 - 6y - 1 ) = 5[ x2 - ( 9y2 + 6y + 1 ) ] = 5[ x2 - ( 3y + 1 )2 ] = 5( x - 3y - 1 )( x + 3y + 1 )
b) = 125x3 - 25x2 + 15x2 - 3x + 5x - 1 = 25x2( 5x - 1 ) + 3x( 5x - 1 ) + ( 5x - 1 ) = ( 5x - 1 )( 25x2 + 3x + 1 )
c) = 5( x - 7 ) + a( x - 7 ) = ( x - 7 )( a + 5 )
d) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )
e) = ax2 + a - a2x - x = ax( a - x ) + ( a - x ) = ( a - x )( ax + 1 )
f) = ( 10x )2 - ( x2 + 25 )2 = ( 10x - x2 - 25 )( 10x + x2 + 25 ) = -( x - 5 )2( x + 5 )2