11. Chứng minh:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

\(b,n^4-n^2=n^2\left(n^2-1\right)=n^2\left(n-1\right)\left(n+1\right)\)

\(=n.n\left(n-1\right)\left(n+1\right)\)

xét \(n=2k\)

\(n.n=4k⋮4\)

xét \(n=2k+1\)

\(\left(n-1\right)\left(n+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮4\)

\(< =>n.n\left(n-1\right)\left(n+1\right)⋮4\)

\(n^4-n^2⋮4< =>ĐPCM\)

22 tháng 7 2021

Trả lời:

Ta có: ( 4n + 1 )2 - 9 

= ( 4n + 1 - 3 ) ( 4n + 1 + 3 )

= ( 4n - 2 ) ( 4n + 4 )

= 4 ( n - 1/2 ) 4 ( n + 1 )

= 16 ( n - 1/2 ) ( n + 1 ) \(⋮\) 16   (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Bài 50:

\((5x+3y)^2=25x^2+30xy+9y^2\)

Bài 51:

\((\frac{1}{3}xy^m+4x^2y)^2=\frac{1}{9}x^2y^{2m}+2.\frac{1}{3}xy^m.4x^2y+16x^4y^2\)

\(=\frac{1}{9}x^2y^{2m}+\frac{}{3}x^3y^{m+1}+16x^4y^2\)

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Bài 54:

\(25x^2y^4+30xy^2z+9z^2=(5xy^2)^2+2.(5xy^2).(3z)+(3z)^2\)

\(=(5xy^2+3z)^2\)

Bài 55:

\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=(\frac{4}{3}x)^2+2.(\frac{4}{3}x).(\frac{3}{2}yz^2)+(\frac{3}{2}yz^2)^2\)

\(=(\frac{4}{3}x+\frac{3}{2}yz^2)^2\)

Bạn chỉ cần nhớ rõ hằng đẳng thức đáng nhớ số 1 là được.

Bài 1: 

\(=a^8+2a^4+1-a^4\)

\(=\left(a^4+1\right)^2-a^4\)

\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)

27 tháng 11 2017

1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)

2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)

3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x

4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x

13 tháng 9 2018

a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5

b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6

Bài 3.      Cho ΔMNP có và MH là đường cao. Gọi Q và R là hình chiếu của H trên các cạnh MN, MP. Gọi Y là điểm đối xứng với H qua Q, T là điểm đối xứng với H qua R. a) Tứ giác MQHR là hình gì? Vì sao ? b) Chứng minh 3 điểm Y, M, T thẳng hàng. c) Chứng minh NP = YN + PT. Bài 4. Cho hình chữ nhật ABCD ( AB > BC), có M là trung điểm của DC. Từ M kẻ đường thẳng vuông góc DC , cắt AB tại N.a. Chứng...
Đọc tiếp

Bài 3.  

    Cho ΔMNP có và MH là đường cao. Gọi Q và R là hình chiếu của H trên các cạnh MN, MP. Gọi Y là điểm đối xứng với H qua Q, T là điểm đối xứng với H qua R.

 a) Tứ giác MQHR là hình gì? Vì sao ?

 b) Chứng minh 3 điểm Y, M, T thẳng hàng.

 c) Chứng minh NP = YN + PT.

 Bài 4.

Cho hình chữ nhật ABCD ( AB > BC), có M là trung điểm của DC. Từ M kẻ đường thẳng vuông góc DC , cắt AB tại N.

a. Chứng minh: Tứ giác ADMN là hình chữ nhật.

b. Chứng minh: Tứ giác AMCN là hình bình hành.

c. Kẻ MH vuông góc NC tại H, Gọi Q, K lần lượt là trung điểm của NB và HC. Chứng minh QK vuông góc MK.

Bài 5.

a. Chứng minh rằng:  với mọi số thực .

b. CMR:  - x2 + 4x - 7 < 0 với mọi số thực x.

c. CMR: Chứng tỏ biểu thức sau không phụ thuộc vào giá trị của biến x, y

        (x+y)3+ (x -y)3 – 2(x3 + 3xy2 + 2)

0