Cho tam giác ABC biết: AB=5, AC=10, A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Tui viết đó nhá,ko phải copy đâu nha !

6 tháng 5 2016

Câu a)

Ta có MN//BC ( giả thiết)

=>AM/AB=MN/BC ( định lí ta lét )

=>MN=AM.BC/AB=3.8/4=6(cm)

*BD=?

Ta có AD là phân giác ( giả thiết )

=>BD/DC=AB/AC (tính chất đường phân giác )

=>BD/(BD+DC)=4/4+6=2/5

=>BD/BC=2/5=2,4 (cm)

*MI=?

Ta có MN//BC (gthiet)

=>MI//BD

=>AM/AB=MI/BD (định lí ta let )

=>MI=MA.BD/AB=3.2,4/4=1,8 (cm)

bạn còn bài nào ko mk giai dùm cho nếu mk biết

1 tháng 3 2020

A B C D N M

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có BD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tc)

\(\Rightarrow\frac{AD}{DC}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)( tc của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)

b) Xét tứ giác BMDN có \(\hept{\begin{cases}MD//BN\left(MD//BC,N\in BC\right)\\ND//MB\left(ND//AB,M\in AB\right)\end{cases}}\)\(\Rightarrow BMND\)là hình bình hành ( dhnb) (3) 

Xét tam giác ABC có: \(MD//BC\left(gt\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{MD}{BC}\)( hệ quả của định lý Ta-let) 

\(\Rightarrow\frac{3}{8}=\frac{MD}{10}\)

\(\Rightarrow MD=3,75\left(cm\right)\left(1\right)\)

Xét tam giác ABC có \(ND//AB\left(gt\right)\) 

\(\Rightarrow\frac{DC}{AC}=\frac{ND}{AB}\)( hệ quả của định lý ta-let) 

\(\Rightarrow\frac{5}{8}=\frac{ND}{6}\)

\(\Rightarrow ND=3,75\left(cm\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow ND=MD\) (4)

Từ (3) và (4) \(\Rightarrow BMDN\)là hình thoi (dhnb)

c) \(S_{BMDN}=4.3,75=15\left(cm\right)\)