Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có bậc là 3 => ( m2 - 25 ) x4 = 0
hay ( m2 - 25 ) = 0 => m2 = 25
=> m = 5
có bậc là 3 => ( \(^{m^2}\)- 25 ) \(^{x^4}\)= 0
hay ( \(m^2\)- 25 ) = 0 => \(m^2\)= 25
=> m = 5
Để f(x) là đa thức bậc 3 thì
\(\hept{\begin{cases}m^2-25=0\\20+4m\ne0\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm5\\m\ne-5\end{cases}\Rightarrow}m=5\)
Vậy m = 5
Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến
f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9
c) Tính f(x) + g(x); f(x) - g(x)
f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )
= 3x2 + x
f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9
= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )
= -2x5 - 14x4 - 2x3 -x2 + 7x + 18
1)x2 +2x=0
=>x(x+2)=0
Xét x=0 hoặc x+2=0
x=-2
Vậy x=0 hoặc x=-2
2)x2 +2x-3=0
=x2 -1x+3x-3=0
=x(x-1)+3(x-1)=0
=(x-1)(x-3)=0
Xét x-1=0 hoặc x-3=0
x=1 x=3
Tự KL nha
a) h(x) = f(x) + g(x)
= 9 - x5 + 4x - 2x3 + x2 - 7x4 + x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
= (-x5 + x5) + (-7x4 + 7x4) + (-2x3 + 2x3) + x2 + 2x2 + 4x - 3x + 9 - 9
= 3x2 + x
vậy h(x) = 3x2 + x
b) ta có: h(x) = 3x2 + x
=> 3x2 + x = 0
từ đó bn phân tích rùi sẽ ra nếu ko ra thì đa thức ko có nghiệm
a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!
nghĩ thui
Đa thức đã cho là bậc 3 theo biến x khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
\(\Rightarrow m=5\)