Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+6x+5=0\)
<=>\(x^2+x+5x+5=0\)
<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9
x^2+6x+5=0
<=> x^2+x+5x+5=0
<=>x(x+1)+5(x+1)=0
<=> (x+5)(x+1)=0
=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1
b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)
\(=9x^2-36x+36-4x^2+8x-4\)
\(=5x^2-28x+32\)
\(=\left(x-5\right)\left(5x-8\right)\)
\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)
a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)
\(-3x^2+10x-3=0\)
\(\left(3-x\right)\left(3x-1\right)=0\)
\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
a) ( x2 - 3x )( x2 + 7x + 10 ) = 216
<=> x( x - 3 )( x + 2 )( x + 5 ) - 216 = 0
<=> [ x( x + 2 ) ][ ( x - 3 )( x + 5 ) ] - 216 = 0
<=> ( x2 + 2x )( x2 + 2x - 15 ) - 216 = 0 (1)
Đặt a = x2 + 2x
(1) trở thành a( a - 15 ) - 216 = 0 <=> a2 - 15a - 216 = 0 <=> ( a - 24 )( a + 9 ) = 0 <=> a = 24 hoặc a = -9
=> \(\orbr{\begin{cases}x^2+2x=24\\x^2+2x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2x-24=0\\x^2+2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-4\right)\left(x+6\right)=0\\\left(x+1\right)^2+8>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
Vậy S = { 4 ; -6 }
b) ( 2x2 - 7x + 3 )( 2x2 + x - 3 ) + 9 = 0
<=> ( x - 3 )( 2x - 1 )( x - 1 )( 2x + 3 ) + 9 = 0
<=> [ ( x - 3 )( 2x + 3 ) ][ ( 2x - 1 )( x - 1 ) ] + 9 = 0
<=> ( 2x2 - 3x - 9 )( 2x2 - 3x + 1 ) + 9 = 0
<=> ( 2x2 - 3x - 4 - 5 )( 2x2 - 3x - 4 + 5 ) + 9 = 0
<=> ( 2x2 - 3x - 4 )2 - 16 = 0
<=> x( 2x - 3 )( 2x2 - 3x - 8 ) = 0
<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x2 - 3x - 8 = 0
<=> x = 0 hoặc x = 3/2 hoặc x = \(\frac{3\pm\sqrt{73}}{4}\)
Vậy S = { 0 ; 3/2 ; \(\frac{3\pm\sqrt{73}}{4}\)}