Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạngvới ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BN là phan gíac
=>AN/AB=CN/BC
=>AN/3=CN/5=(AN+CN)/8=16/8=2
=>AN=6cm; CN=10cm
c: góc AMN=góc BMH
góc ANM=góc BMH
=>góc AMN=góc ANM
=>AM=AN
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=20
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9,6\left(cm\right)\\BH=7,2\left(cm\right)\end{matrix}\right.\)
Hình tự vẽ nha (Hình dễ vẽ mà :D)
a, Xét tam giác HBA và tam giác ABC có:
\(\widehat{AHC}=\widehat{BAC}\)
\(\widehat{C}\) chung
\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)
b, Xét tam giác ABC vg tại A có: AB\(\perp\)AC
\(\Rightarrow\) BC2 = AB2 + AC2
BC2 = 122 + 162
BC2 = 144 + 256
BC2 = 400
BC = \(\sqrt{400}\) = 20 (cm)
Vì \(\Delta\)HBA ~ \(\Delta\)ABC (cma)
\(\Rightarrow\) \(\frac{AH}{AC}=\frac{AB}{BC}\) = \(\frac{HB}{AB}\) (t/c đường p/g của \(\Delta\))
hay \(\frac{AH}{16}=\frac{12}{20}\) = \(\frac{HB}{12}\)
\(\Rightarrow\) AH = \(\frac{12\cdot16}{20}\) = 9,6 (cm)
\(\Rightarrow\) BH = \(\frac{12\cdot12}{20}\) = 7,2 (cm)
c, Xét tam giác ABH có: BM là p/g của \(\widehat{B}\) (M \(\in\) BN)
\(\Rightarrow\) \(\frac{AM}{MH}=\frac{AB}{BH}\) (t/c đường p/g của \(\Delta\)) (1)
Xét tam giác BAH và tam giác BCA có:
\(\widehat{BHA}=\widehat{BAC}\) = 90o
\(\widehat{B}\) chung
\(\Rightarrow\) \(\Delta\)BAH ~ \(\Delta\)BCA (gg)
\(\Rightarrow\) \(\frac{BA}{BC}=\frac{BH}{BA}\) (t/c)
hay \(\frac{BC}{BA}=\frac{BA}{BH}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\frac{AM}{MH}=\frac{BC}{BA}\) = (= \(\frac{AB}{BH}\))
Xét tam giác AHI có: MN//HI (M \(\in\) BN)
\(\Rightarrow\) \(\frac{AN}{NI}=\frac{AM}{MH}\) (Định lý Ta-lét) (4)
Xét tam giác ABC có: BN là p/g của \(\widehat{B}\) (gt)
\(\Rightarrow\) \(\frac{NC}{AN}=\frac{BC}{BA}\) (t/c đường p/g của \(\Delta\)) (5)
Từ (3), (4), (5) \(\Rightarrow\) \(\frac{AN}{NI}=\frac{NC}{AN}\) (= \(\frac{AM}{MH}=\frac{BC}{BA}\))
hay AN2 = NI . NC (đpcm)
Chúc bn học tốt!! (khó nhất ở phần c theo, tách ý ra sẽ làm được thôi mà :D)
A B C H
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) là góc chung, \(\widehat{AHB}=\widehat{BAC}=90^o\)
=> \(\Delta HBA~\Delta ABC\) (g.g) (1)
b) Xét \(\Delta HAC\) và \(\Delta ABC\) có:
\(\widehat{C}\) là góc chung, \(\widehat{AHC}=\widehat{BAC}=90^o\)
=> \(\Delta HAC~\Delta ABC\) (g.g) (2)
Từ (1) và (2) suy ra \(\Delta HBA~\Delta HAC\)
=> \(\frac{S_{\Delta HBA}}{S_{\Delta HAC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{12}{16}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{BA}{BC}=\dfrac{HB}{AB}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HB}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{9}{5}=1.8\left(cm\right)\\AH=\dfrac{12}{5}=2.4\left(cm\right)\end{matrix}\right.\)
Vậy: BC=5cm; AH=2,4cm; HB=1,8cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạngvới ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BN là phan gíac
=>AN/AB=CN/BC
=>AN/3=CN/5=(AN+CN)/8=16/8=2
=>AN=6cm; CN=10cm
c: góc AMN=góc BMH
góc ANM=góc BMH
=>góc AMN=góc ANM
=>AM=AN