Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
góc HDB=góc KEC
=>ΔHBD=ΔKCE
=>HB=KC
c: góc HBD=góc KCE
=>góc OBC=góc OCB
=>ΔOBC cân tại O
a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )
BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)
b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì.
Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM
c) Xét 2 tam giác EKC và tam giác DHB vuông tại K và H
Ta có: EC = DB
Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)
=> BH = CK
a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
\(AB=AC\)(tam giác ABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\Rightarrow\Delta ADE\) cân tại A
b) Ta có: \(BM=MC\) (M là trung điểm BC)
\(BD=CE\left(gt\right)\)
\(\Rightarrow BM+BD=MC+CE\Rightarrow MD=ME\)
=> M là trung điểm của DE
Xét tam giác ADE vuông tại A có
AM là đường trung tuyến (M là trung điểm DE)
=> AM là tia phân giác \(\widehat{DAE}\)
Và AM là đường trung trực ΔADE => AM⊥DE
c) Xét tam giác BHD vuông tại H và tam giác CKE vuông tại K có
\(\widehat{HDB}=\widehat{KEC}\)( Tam giác ADE cân tại A)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta BHD=\Delta CKE\left(ch-gn\right)\)
=> BH=CK(2 cạnh tương ứng)
d) Ta có: AD=AE( tam giác ADE cân tại A)
DH=KE( tam giác BHD = tam giác CKE)
=> AD-DH=AE-KE
=> AH=AK
=> Tam giác AHK cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^0-\widehat{BAC}}{2}\)
Mà \(\widehat{ADE}=\dfrac{180^0-\widehat{BAC}}{2}\) (tam giác AADE cân tại A)
\(\Rightarrow\widehat{AHK}=\widehat{ADE}\)
Mà 2 góc này là 2 góc đồng vị
=> HK//DE => HK//BC
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a) ΔABC cân tại A suy ra
Ta lại có :
- ΔABM và ΔACN có
AB = AC (Do ΔABC cân tại A).
BM = CN(gt)
⇒ ΔABM = ΔACN (c.g.c)
⇒ AM = AN (hai góc tương ứng) ⇒ ΔAMN cân tại A.
b) Hai tam giác vuông BHM và CKN có
BM = CN (gt)
⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)
⇒ BH = CK (hai cạnh tương ứng)
c) Theo câu b ta có ΔBHM = ΔCKN ⇒HM = KN (hai góc tương ứng)
Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.
d) ΔBHM = ΔCKN
Vậy tam giác OBC là tam giác cân tại O.
e) Khi góc BAC = 60º và BM = CN = BC
Tam giác cân ABC có góc BAC = 60º nên là tam giác đều
⇒ AB = BC và góc B1 = 60º
Ta có: AB = CB, BC = BM (gt) ⇒ AB = BM ⇒ ΔABM cân ở B ⇒
Mà theo tính chất góc ngoài trong ΔBAM thì
Tương tự ta có
Tam giác cân OBC có góc B3=60º nên ΔOBC là tam giác đều.
a) tam giác ABC cân
=> góc ABC=góc ACB
góc MBA+góc ABC=180độ (kề bù)
góc NCA+góc ACB=180độ(kề bù)
=> góc ABM=góc ACN
xét 2 tam giác ABM và ACN có:
AB=AC(tam giác ABC cân )
góc ABM=góc ACN(chứng minh trên)
BM=CN(gt)
=> 2 tam giác ABM=ACN(c.g.c)
=> AM=AN(2 cạnh tương ứng)
=> tam giác AMN cân ở A
b) tam giác AMN cân ở A
=> góc M=góc N
xét 2 tam giác MHB và NKC có:
góc MHB=góc NKC(=90độ)
MB=NC(gt)
góc M =góc N(chứng minh trên)
=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)
=> BH=CK(2 cạnh tương ứng)
c) ta có : AM=AN (theo a)
HM=KN (tam giác MHB=tam giác NKC)
AM = AH+HM
AN= AK+ KN
=> AH= AK
d) tam giác MHB=tam giác NKC(theo b)
=> góc HBM=góc KCN(2 góc tương ứng)
góc HBM=góc OBC(đối đỉnh)
góc KCN=góc OCB(đối đỉnh)
=> góc OBC=góc OCB
=> tam giác OBC cân ở O
e) tam giác ABC có AB=AC ; góc BAC=60độ
=> tam giác ABC đều
=> AB=AC=BC
mà BC=BM(gt)
=> BM=AB
=>tam giác ABM cân ở B
góc ABC + góc ABM=180độ (kề bù)
=> góc ABM =180độ - góc ABC
=180độ-60độ
=120độ
tam giác ABC cân ở B
=> góc BAM=góc BMA =(180độ-góc ABM) / 2=1800−12002=6002=3001800−12002=6002=300
vậy góc AMN=30độ
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔADE có AH/AD=AK/AE
nên HK//DE
c:
góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
góc MBC=góc HBD
góc MCB=góc KCE
mà góc HBD=góc KCE
nên góc MBC=góc MCB
=>ΔMBC cân tại M