K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 12 2023
a: Ta có: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOC
=>OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
mà \(\widehat{OBA}=90^0\)
nên \(\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)
\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCOA vuông tại C)
mà \(\widehat{BOA}=\widehat{COA}\)
nên \(\widehat{KOA}=\widehat{KAO}\)
=>ΔKAO cân tại K
Đề bạn rối sao ý, mình chỉnh như này không biết có đúng không nhưng mình sẽ làm theo đề mình đưa ra:
Cho (O) và điểm A ∉ (O) sao cho OA = 2R. Vẽ tiếp tuyến AB với (O), BH là đường cao của △ABO, BH cắt (O) tại C.
*Hình:
O A B H C d K E G I
Bài làm
a) Xét đường tròn tâm O có:
CB là dây cung
OA vuông góc với CB tại H
=> H là trung điểm CB (Tính chất đường cao với dây cung)
Xét tam giác ABC có:
AH là đường cao
AH là trung tuyến (Do H là trung điểm CB)
=> Tam giác ABC cân tại A
=> AB = AC
Xét tam giác OCA và tam giác OBA có:
AC = AB (Chứng minh trên)
OA chung
OC = OB (bằng R)
=> Tam giác OCA = tam giác OBA (c.c.c)
=> \(\widehat{ABO}=\widehat{ACO}\)
Mà \(\widehat{ABO}=90^0\)
=> \(\widehat{ACO}=90^0\)
Và C thuộc (O)
=> AC là tiếp tuyến của (O)
b) Kẻ KE vuông góc với OA cắt (O) tại E.
Vì A là giao điểm của hai đường tiếp tuyến AB và AC
=> AO là phân giác của góc AOB
Xét tam giác KAE có:
AO là phân giác của góc AOB
AO vuông góc với KE
=> Tam giác KAE cân tại A
=> AK = AE (1)
=> AO là trung tuyến
Gọi giao điểm của AO và KE là G
=> KG = GE
Xét tam giác KGO và tam giác EGA có:
\(\widehat{OKG}=\widehat{GEA}\)(Là hai góc so le trong do OK // AB vì cùng vuông góc với OB.)
KG = GE (Chứng minh trên)
\(\widehat{KGO}=\widehat{EGA}\)(đối)
=> Tam giác KGO = tam giác EGA (g.c.g)
=> OK = AE (2)
Từ (1) và (2) => KA = KO
Từ từ để mình nghĩ nốt c với d