Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Ta có => A'H = BH = a
Gọi
HI//B'C' (tính chất đường trung bình)
=> A'B ⊥ B'C
\(\widehat{A'BA}=60^0\Rightarrow AA'=AB.tan60^0=a\sqrt{3}\)
(Lại 1 bài mà sử dụng tọa độ hóa sẽ cho kết quả cực kì nhanh chóng).
Lớp 11 thì chắc phải dựng hình:
Trong mp (A'B'C'), qua C' kẻ đường thẳng song song A'B', qua B' kẻ đường thẳng song song A'C', hai đường thẳng này cắt nhau tại D'
\(\Rightarrow AC'||BD'\) (do tứ giác ABD'C' là hình bình hành)
\(\Rightarrow d\left(AC';A'B\right)=d\left(AC';\left(A'BD'\right)\right)=d\left(C';\left(A'BD'\right)\right)\)
Gọi giao điểm của A'D' và B'D' là O \(\Rightarrow OB'=OC'\) theo t/c 2 đường chéo hbh
\(\Rightarrow d\left(C';\left(A'BD'\right)\right)=d\left(B';\left(A'BD'\right)\right)\)
Quy được về 1 bài tính khoảng cách cơ bản: tứ diện B.A'B'D' có \(BB'\perp\left(A'B'D'\right)\) , tìm k/c từ B' đến mp (A'BD')
Lần lượt kẻ B'H vuông góc A'D' và B'K vuông góc BH thì B'K là k/c cần tìm
Bạn tự tính toán nốt nhé
\(A'A\perp\left(ABC\right)\) theo giả thiết \(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và đáy
\(\Rightarrow tan\widehat{A'BA}=2\Rightarrow A'A=AB.tan\widehat{A'BA}=2a\)
a.
Gọi D' là trung điểm B'C' \(\Rightarrow A'D'\perp B'C'\) (đáy là tam giác vuông cân)
\(\Rightarrow A'D'\perp\left(BCC'B'\right)\Rightarrow\widehat{A'BD'}\) là góc giữa A'B và (BCC'B')
\(A'B=\sqrt{AB^2+A'A^2}=a\sqrt{5}\)
\(A'D'=\dfrac{1}{2}B'C'=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow sin\widehat{A'BD'}=\dfrac{A'D'}{A'B}=\dfrac{\sqrt{10}}{10}\Rightarrow\widehat{A'BD'}\approx18^026'\)
b.
\(\left\{{}\begin{matrix}A'C'\perp A'B'\left(gt\right)\\A'A\perp\left(A'B'C'\right)\Rightarrow A'A\perp A'C'\end{matrix}\right.\)
\(\Rightarrow A'C'\perp\left(ABB'A'\right)\Rightarrow\widehat{C'BA'}\) là góc giữa C'B và (ABB'A')
\(tan\widehat{C'BA'}=\dfrac{A'C'}{A'B}=\dfrac{a}{a\sqrt{5}}=\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow\widehat{C'BA'}\approx24^06'\)