Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Chọn hệ trục tọa độ Oxyz như hình vẽ, ta có:
Đặt SO = x > 0. => S (0;0; x).
M , N lần lượt là trung điểm của SB và SD nên:
Theo giả thiết: AM ⊥CN
SO là trục đường tròn ngoại tiếp mặt đáy.
Gọi H là trung điểm SA . Qua H dựng đường trung trực d của SA, I= d ∩ SO .
=> Mặt cầu ngoại tiếp khối chóp S .ABCD có tâm I , bán kính R = SI.
∆ SHI đồng dạng với ∆ SOA
Vậy bán kính mặt cầu ngoại tiếp khối chóp S ABCD . là R= 3 a 10
Đáp án B
Do các cạnh bên bằng nhau nên hình chiếu của S lên (ABCD) phải trùng với tâm H của hình vuông ABCD.
Dễ thấy I là trung điểm của SC, vì BD ⊥ SC, nên BD//(P). Do đó EF // BD. Để ý rằng EF đi qua trọng tâm J của tam giác SDB.
S D A H B M C I N
Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)
M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)
Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy
Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)
\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)
Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)
Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC
\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)
Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)