Cho ΔMNP vuông tại M, đường cao MH. Gọi D, E lần lượt là chân đường vuông góc hạ từ H xu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án đề thi hk1 môn toán lớp 8

A)\(\text{Tứ giác MDHE có ba góc vuông nên là hình chữ nhật.}\)

B)\(\text{MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.}\)

\(\text{Gọi O là giao điểm của MH và DE.}\)

Ta có: OH = OE.=> góc H1 = góc E1

\(\text{DEHP vuông tại E có A là trung điểm PH suy ra: AE = AH.}\)

=> góc H2 = góc E2

=> góc AEO và AHO bằng nhau mà góc AHO = 900

\(\text{Từ đó góc AEO = 900 hay tam giác DEA vuông tại E.}\)

C)DE = 2EA <=> OE = EA <=> tam giác OEA vuông cân  

<=> góc EOA = 450 <=> góc HEO = 900

<=> MDHE là hình vuông

<=> MH là phân giác của góc M mà MH là đường cao nên tam giác MNP vuông cân tại M.

HÌNH THÌ Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

9 tháng 10 2020

74+219=

Phần a,b nha 

a)Xét tứ giác MDHE, có:

MDHˆ=900MDH^=900

Mˆ=900M^=900

HEMˆ=900HEM^=900

=> Tứ giác MDHE là hình chữ nhật

b) Gọi giao điểm của MH là DE là O MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường

=> OH=OE

Xét tam giác EOH, có:

OH=OE(CMT)

=> Tam giác EOH cân tại O

=> H1ˆ=E1ˆH1^=E1^

Xét DEHP vuông tại E ,có:

A là trung điểm PH

=> AE = AH.

=> H2ˆ=E2ˆH2^=E2^

=> AEOˆ=AHOˆAEO^=AHO^ =900=900

Từ đó góc AEO = 900

hay tam giác DEA vuông tại E.

30 tháng 12 2021

ok thankyeu

Hình bn kham khảo ở : Imgur: The magic of the Internet ( vào thống kê )

a, Tứ giác MDHE có ba góc vuông nên là hình chữ nhật.

b,MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Gọi O là giao điểm của MH và DE.

Ta có: OH = OE.=> góc H1 = góc E1

DEHP vuông tại E có A là trung điểm PH suy ra: AE = AH.

=> góc H2 = góc E2

=> góc AEO và AHO bằng nhau mà góc AHO = 900.

Từ đó góc AEO = 900 hay tam giác DEA vuông tại E.

c, DE = 2EA <=> OE = EA <=> tam giác OEA vuông cân

<=> góc EOA = 450 <=> góc HEO = 900

<=> MDHE là hình vuông

<=> MH là phân giác của góc M mà MH là đường cao nên tam giác MNP vuông cân tại M.

a: Xét tứ giác MDHE có 

\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)

Do đó: MDHE là hình chữ nhật

a: Xét tứ giác MDHE có

\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)

=>MDHE là hình chữ nhật

b: MDHE là hình chữ nhật

=>MH cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của MH

nên O là trung điểm của DE

=>DO=OE

c: ΔHDN vuông tại D

mà DI là đường trung tuyến

nên DI=HI=IN

=>ΔIHD cân tại I

ΔPEH vuông tại E

mà EK là đường trung tuyến

nên EK=KP=KH

=>ΔKEH cân tại K

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{KHE}+\widehat{HMD}\)

\(=\widehat{HMD}+\widehat{HND}=90^0\)

=>KE vuông góc ED(1)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{IHD}+\widehat{EMH}\)

\(=\widehat{HPM}+\widehat{HMP}=90^0\)

=>ID vuông góc DE(2)

Từ (1) và (2) suy ra DI//EK

8 tháng 11 2023

cảm ơn nha bạn

 

30 tháng 11 2019

Câu hỏi của Ţɦôйǥ ßáø - Toán lớp 8 - Học toán với OnlineMath