Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.
Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:
$a=\frac{m}{2}; b=n-\frac{m}{2}$.
Khi đó:
$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.
$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:
$x(x-1)\vdots 2$
$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$
Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$
$\Rightarrow f(x)\in\mathbb{Z}$
Ta có đpcm.
\(+f\left(0\right)=c\in Z\Rightarrow c\in Z\)
\(+f\left(2n\right)=4n^2.a+2n.b+c\in Z\Rightarrow n\left(4n.a+2b\right)\in Z\Rightarrow4n.a+2b\in Z\)với mọi số nguyên n.
\(+f\left(2n+1\right)=\left(4n^2+4n+1\right).a+\left(2n+1\right).b+c=\left(4n^2.a+2n.b\right)+\left(4n+1\right)a+b+c\in Z\) \(\Rightarrow\left(4n+1\right)a+b\in Z\)với mọi số nguyên n.
Suy ra: \(\left(8n+2\right)a+2b-\left(4n.a+2b\right)=\left(4n+2\right)a=\left(2n+1\right).2a\in Z\)với mọi số nguyên n
\(\Rightarrow2a\in Z\)
Mà \(4n.a+2b=2.2a+2b\in Z\)
\(\Rightarrow2b\in Z\)
Vậy \(2a,\text{ }2b,\text{ }c\in Z\)
Bạn tham khảo câu trả lời của anh ali tại đây:
Câu hỏi của Dương Thúy Hiền - Toán lớp 8 - Học toán với OnlineMath