Từ đỉnh A của tam giác ABC, kẻ các dường vuông góc xuống các tia phân giác trong và ngoà...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

a) E thuộc tia phân giác của \(\widehat{CBH}\)

\(\Rightarrow\)EG = EH (tính chất tia phân giác)          (1)

E thuộc tia phân giác của \(\widehat{BCK}\)

\(\Rightarrow\)EG = EK (tính chất tia phân giác)           (2)

Từ (1) và (2) suy ra:  EH = EG = EK

b) EH = EK

\(\Rightarrow\)E thuộc tia phân giác của \(\widehat{BAC}\)mà E khác A

 Vậy AE là tia phân giác của \(\widehat{BAC}\)

c) AE  là tia phân giác góc trong tại đỉnh A.

    AF là tia phân giác góc ngoài tại đỉnh A.

\(\Rightarrow AE\perp AF\) (tính chất hai góc kề bù)

Hay \(AE\perp DF\)

d) Chứng minh tương tự câu a ta có BF là tia phân giác của \(\widehat{ABC}\)

CD là tia phân giác của \(\widehat{ACB}\)

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

      BE là phân giác góc ngoài tại đỉnh B.

\(\Rightarrow BF\perp BE\) (tính chất hai góc kề bù)

Hay \(BF\perp ED\)

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

\(\Rightarrow CD\perp CE\)(tính chất hai góc kề bù)

Hay \(CD\perp EF\)

Các đường thẳng AE, FB, DC là các đường cao trong tam giác DEF.

19 tháng 4 2018

sorry , I don't no

Em lớp 6 , chịu thôi

KB ko chị