Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) xét tam giác BMC có ba đường cao BA,ME,CD =>ba đường thẳng đó đồng quy
4) chứng minh t/g AMEB nội tiếp => góc MAE= MBE ( hai góc nội tiếp cùng chắn cung ME)
có goc DAC=DBC( vi t/g ABCD nội tiếp )
=>MAE=DAC (=goc MBC) =>AC là phân giác của DAM
xét tam giác ADEcó: MN và AC là hai tia phân giác cắt nhau tại M => M là tâm đường tròn nội tiếp tam giác ADE
Bạn tự vẽ hình nhé!
+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)
- Nối O với F. Kẻ OH | BF.
Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2
Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)
=> góc ABF = góc BOF/2 (*)
- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2
Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc FOC/ 2
=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2
=> góc BDF = góc BOF/2 (**)
Từ (*)(**) => góc ABF = BDF mà góc FAB chung
=> Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2
+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung
=> Tam giác AFI đồng dạng với tam giác AOD (c - g- c)
=> góc AIF = ADO ( 2 góc tương ứng)
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Xét (O) có
ΔAFC nội tiêp
AC là đường kính
Do đó: ΔAFC vuông tại F
Xét ΔHBA vuông tại B và ΔHFC vuông tại F có
góc BHA=góc FHC
DO đó: ΔHBA đồng dạng với ΔHFC
=>HB/HF=HA/HC
=>HB*HC=HF*HA
b: Kẻ EG vuông góc với DA
Xet tứ giác EDHA có
ED//HA
EA//HD
Do đó: EDHA là hình bình hành
=>EA=DH
=>ΔEAG=ΔHDB
=>AG=BD=2AB
=>B là trung điểm của AG
=>BG=GD
=>ΔEBD cân tại E
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>\(BC=\sqrt{AB^2-AC^2}=R\sqrt{3}\)
b: Ta có: ΔOAC cân tại O
mà OD là đường cao
nên OD là tia phân giác của góc COA
Xét ΔOCD và ΔOAD có
OC=OA
\(\widehat{COD}=\widehat{AOD}\)
OD chung
Do đó: ΔOCD=ΔOAD
Suy ra: \(\widehat{OCD}=\widehat{OAD}=90^0\)
hay AD là tiếp tuyến của (O)
a: Xét ΔCAB và ΔCDB có
CA=CD
BA=BD
CB chung
Do đó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>CD là tiếp tuyến của (O)
b: CA=CD
BA=BD
Do đó: CB là trung trực của AD
=>CB vuông góc với AD tại trung điểm của AD
Xét ΔABC vuông tại A có AF là đường cao
nên AF^2=BF*FC
=>AD^2=(2*AF)^2=4*AF^2=4*BF*FC