Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt: p = 5k+r (0 ≤ r < 5)

* nếu r = 1 ⇒ p+14 = 5k+15 chia hết cho 5

* nếu r = 2 ⇒ p+8 = 5k + 10 chia hết cho 5

* nếu r = 3 ⇒ p+2 = 5k+5 chia hết cho 5

* nếu r = 4 ⇒ p+6 = 5k+10 chia hết cho 5

* nếu r = 0 ⇒ p = 5k là nguyên tố khi k = 1

p = 5, các số kia là: 7,11,13,19 là các số nguyên tố: thỏa

Vậy p = 5

học ngoan nha 

8 tháng 6 2015

Trả lời:

Gọi 3 số nguyên tố đó là a,b,c 
Ta có: abc =5(a+b+c) 
=> abc chia hết cho 5, do a,b,c nguyên tố 
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5 
=> bc = b+c +5 => (b-1)(c-1) = 6 
{b-1 =1 => b=2; c-1 =6 => c=7 
{b-1=2, c-1=3 => c=4 (loại) 

Vậy 3 số nguyên tố đó là 2, 5, 7 
2> 
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố 
Với p>3 

* Do p nguyên tố nên ko chia hết cho 3 
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3 
=> ko tồn tại số nguyên tố dạng 3k+1 

Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3 
=> ko tồn tại số nguyên tố dạng 3k+2 

Vậy p=3 là duy nhất

 

8 tháng 3 2020

Đặt m là ƯC(2p-1;4p-1)

Theo bài ra ta có:

2p-1 chia hết cho m

4p-1 chia hết cho m

     2(2p-1) chia hết cho m

=>

     4p-1 chia hết cho m

     

     4p-2 chia hết cho m

=>

      4p-1 chia hết cho m

=> (4p-2) - (4p-1) chia hết cho m

=> 1 chia hết cho m

=> m=1

Vậy m=1

9 tháng 1 2015

Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm

9 tháng 1 2015

1) p=3

p=3

p=3

p=5

18 tháng 12 2015

Với p=2

=>p+6=8 là hợp số

Với p=3

=>p+6=9 là hợp số 

với p=5

=>p+6=11 là hợp số

p+8=11 là hợp số

p+12=17 là hợp số

p+14=17 là hợp số 

Với p>5 thì p có dạng 5k+1;5k+2;5k+3;5k+4

Với p=5k+1 =>p+14=5k+15=5(k+3) chia hết cho 5 là hợp số

Với p=5k+2 =>p+8=5k+10=5(k+2) chia hết cho 5 là hợp số

Với p=5k+3 =>p+12=5k+15=5(k+3) chia hết cho 5 là hợp số

Với p=5k+4 =>p+6=5k+10=5(k+2) chia hết cho 5 là hợp số

Vậy p nguyên tố p>5 =>không thoả mãn

Vậy p=5 

18 tháng 12 2015

dể thì làm đi coi nào 

28 tháng 10 2015

hiệu 2 số cũng là số nguyên tố bạn à

25 tháng 2 2021

Thử `p=2`

`=>p+2=4(HS)`

`=>p=2`(loại).

Thử `p=3`

`=>p+12=15(HS)`

`=>p=3`(loại).

Thử `p=5`

`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}

`=>p=5(TM)`

Nếu `p>5` mà p là SNT

`=>p cancel{vdost} 5`

`=>p=5k+1,5k+2,5k+3,5k+4`

`+)p=5k+1=>p+14=5k+15 vdots 5`

`=>p=5k+1` (loại).

`+)p=5k+2=>p+8=5k+10 vdots 5`

`=>p=5k+2` (loại).

`+)p=5k+3=>p+12=5k+15 vdots 5`

`=>p=5k+3` (loại).

`+)p=5k+4=>p+6=5k+10 vdots 5`

`=>p=5k+4` (loại).

Vậy `p=5`

25 tháng 2 2021

Ôi trời ghi nhầm thực ra là p không chia hết cho 5

5 tháng 5 2017

Lan Hương ơi !!! M đố mấy bài này thì bố thằng nào làm nổi toàn câu khó.

T chịu luôn , t không biết.

25 tháng 1 2017

+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)

⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm

25 tháng 1 2017

P=2=>2+6=8 \(\notin\)P (loại)

P=3=>3+6=9\(\notin\)P (loại)

P=5=>5+6=11 \(\in\)P (TM)

          5+8=13 \(\in\)P (TM)

          5+12=17 \(\in\)P (TM)

         5+14=19 \(\in\)P (TM) 

P>5 =>P=5.k+1 hoặc P=5.k+2 hoặc P=5.k+3 hoặc P=5.k+4 (k\(\in\)N)

Nếu P=5.k+1 thì P+14=5.k+1+14=5.(k+1)\(⋮5\) =>P+14 \(\notin\)P (loại)

Nếu P=5.k+2 thì P+8=5.k+2+8 =5.(k+2)\(⋮5\)=>P+8 \(\notin\)P(loại)

Nếu P=5.k+3 thì P+12=5.k+3+12=5.(k+3)\(⋮5\)=>P+12 \(\notin\)P(loại)

Nếu P=5.k+4 thì P+6 =5.k+6+4 =5.(k+4) \(⋮5\)=>P+6 \(\notin\)P(loại)

=>P=5(TM)

Vậy để P+6,P+8,P+12,P+14 đều là các số nguyên tố thì P=5

tk cho minh nha