Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, f(x) = x99 + x55 + x11 + x + 7
f (-1)= -199 + -155 + -111 + -1 + 7
f( -1) = 3
Vậy dư = 3
phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha
Lời giải:
Đặt $f(x)=x^{99}+x^{55}+x^{11}+x+7$.
a) Theo định lý Bedu về phép chia đa thức, số dư của $f(x)$ khi chia cho $x+1$ là $f(-1)=(-1)^{99}+(-1)^{55}+(-1)^{11}+(-1)+7=3$
b)
$f(x)=x^{99}+x+x^{55}+x+x^{11}+x-2x-7$
$=x(x^{98}+1)+x(x^{54}+1)+x(x^{10}+1)-2x-7$
$=x[(x^2)^{49}+1]+x[(x^2)^{27}+1]+x[(x^2)^5+1]-2x-7$
Hiển nhiên: $x[(x^2)^{49}+1]+x[(x^2)^{27}+1]+x[(x^2)^5+1]\vdots x^2+1$
Do đó $f(x)$ chia $x^2+1$ dư $-2x-7$