Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
a: ΔABC cân tại A
mà AK là đường phân giác
nên AK vuông góc BC và K là trung điểm của BC
Xét ΔDCB có
K,A lần lượt là trung điểm của BC,BD
=>KA là đường trung bình
=>KA//CD và KA=CD/2
b: KA//CD
KA vuông góc BC
=>DC vuông góc CB
=>góc DCB=90 độ
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
Tự vẽ hình nhé
a) Vì AB = AC => tam giác ABC cân tại A
Xét tam giác ABM và ACM có \(\hept{\begin{cases}AB=AC\\AM\\BM=MC\end{cases}chung}\)
=>\(\Delta ABM=\Delta ACM\)( c.c.c) ( đpcm)
b) Theo a) có \(\Delta ABM=\Delta ACM\) =.> \(\widehat{BAM}=\widehat{CAM}\)
=> AK là tia phân giác ....
c)Xét tam giác BEC và tam giác CEB có
BD = CE ( vì AB = AC mà AD=AE)
góc ABC=góc ACB (tam giác cân)
BC chung
=> tam giác ....= tam giác....(c.g.c)
=> góc EBC = góc DCB
=> tam giác BCK cân tại K
=> BK=KC
Xét tam giác AKB và tam giác AKC có
AB=AC
AK chung
BK=KC
=> tam giác ...=tam giác...(C.C.C)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK là tia phân giác góc ABC\(\)(1)
Mà AM là phân giác góc ABC(2)
Từ (1) và (2) => A,M,K thẳng hàng
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ