Phân tích đa thức sau thành nhân tử:

P(x)=(x-3)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2022

\(\left(x-3\right)^4+\left(x-1\right)^4-16\)

\(=\left(x-3\right)^4+\left[\left(x-1\right)^2-4\right]\left[\left(x-1\right)^2+4\right]\)

\(=\left(x-3\right)^4+\left(x-1-2\right)\left(x-1+2\right)\left(x^2-2x+5\right)\)

\(=\left(x-3\right)^4+\left(x-3\right)\left(x+1\right)\left(x^2-2x+5\right)\)

\(=\left(x-3\right)\left(x^3-9x^2+27x-27\right)+\left(x-3\right)\left(x^3-2x^2+5x+x^2-2x+5\right)\)

\(=\left(x-3\right)\left(x^3-9x^2+27x-27\right)+\left(x-3\right)\left(x^3-x^2+3x+5\right)\)

\(=\left(x-3\right)\left(x^3-9x^2+27x-27+x^3-x^2+3x+5\right)\)

\(=\left(x-3\right)\left(2x^3-10x^2+30x-22\right)\)

\(=2\left(x-3\right)\left(x^3-5x^2+15x-11\right)\)

\(=2\left(x-3\right)\left(x^3-x^2-4x^2+4x+11x-11\right)\)

\(=2\left(x-3\right)\left[x^2\left(x-1\right)-4x\left(x-1\right)+11\left(x-1\right)\right]\)

\(=2\left(x-3\right)\left(x-1\right) \left(x^2-4x+11\right)\)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

1 tháng 3 2016

a/ x+5x+10x-4

=(x4- 4)+(5x+ 10x)

=(x2+2) (x2-2) + 5x(x2 +2 )

=(x2+2)(x2 -2 +5x)

b/x5 - x+x3 -x2 +x-1

=x4(x-1)+x3(x-1)+(x-1)

=(x-1)(x4+x3+1)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

7 tháng 11 2018

Mình đã làm xong lâu rồi bạn :)

Stop đào mộ :)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

20 tháng 9 2018

\(49\left(x-4\right)^2-9\left(x+2\right)^2\)

\(=\left(7x-28\right)^2-\left(3x+6\right)^2\)

\(=\left(7x-28-3x-6\right)\left(7x-28+3x+6\right)\)

\(=\left(4x-34\right)\left(10x-22\right)\)

\(=4\left(2x-17\right)\left(5x-11\right)\)

21 tháng 9 2018

cảm ơn nha

2 tháng 8 2018

\(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\left(x-2\right)^2\)

\(3x^2+10x+3\)

\(=3x^2+x+9x+3\)

\(=x\left(3x+1\right)+3\left(3x+1\right)\)

\(=\left(x+3\right)\left(3x+1\right)\)

2 tháng 8 2018

\(x^4-4x^3+4x^2\)

\(=x^2.\left(x^2-2.x.2+2^2\right)\)

\(=x^2.\left(x-2\right)^2\)

15 tháng 8 2016

bậc to thế ==

16 tháng 8 2016


 

8 tháng 9 2021

\(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+x+1=\left(x^3+1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)

8 tháng 9 2021

`x^4 +x^3 +x+1`

`= (x^4 +x^3) + (x+1)`

`=x^3 (x+1) + (x+1)`

`= (x+1) (x^3 +1)`

`= (x+1) (x^3 +1^3)`

`= (x+1) (x+1) (x^2 - x . 1 +1^2)`

`= (x+1)^2 (x^2 - x+1)`