Giải hệ phương trình:

(x-1)(2y+1) = (x-3)(y-5) + xy...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}\left(x-1\right)\left(2y+1\right)=\left(x-3\right)\left(y-5\right)+xy\\\left(x+1\right)\left(y+1\right)=\left(2x-1\right)\left(y+1\right)-xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2xy+x-2y-1=xy-5x-3y+15+xy\\xy+x+y+1=2xy+2x-y-1-xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y-1=-5x-3y+15\\x+y+1=2x-y-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x+y=16\\-x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+2y=32\\-x+2y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}13x=34\\6x+y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{34}{13}\\y=16-6x=16-6\cdot\dfrac{34}{13}=\dfrac{4}{13}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:

\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=y=3\)

Vậy HPT có nghiệm $(x,y)=(3,3)$

1 tháng 7 2015

\(\left(1\right)\Leftrightarrow x^2-xy-y^2-\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y-1\right)=0\)

 

11 tháng 12 2019

Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá
 

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

14 tháng 10 2018

\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)

\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)

\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)

\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)

\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)