Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M I H K O
a/ Xét tg vuông AMB và tg vuông IMA có
\(\widehat{MAI}=\widehat{ABM}\) (cùng phụ với \(\widehat{AMB}\) )
=> tg AMB đồng dạng với tg IMA (g.g.g)
b/
Trong hình vuông hai đường chéo vuông góc với nhau
Xét tg vuông OBC và tg vuông CBD có
\(\widehat{DBC}\) chung => tg OBC đồng dạng với tg CBD \(\Rightarrow\frac{OC}{DC}=\frac{BC}{BD}\Rightarrow OC.BD=BC.DC\left(dpcm\right)\)
c/ Kéo dài AH cắt CD tại N
Xét tg vuông ABM và tg vuông DAN có
\(\widehat{DAN}=\widehat{ABM}\) (cùng phụ với \(\widehat{AMB}\) )
AB=AD (cạnh hình vuông)
\(\Rightarrow\Delta ABM=\Delta DAN\) (Tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> AM=DN mà \(AM=\frac{AD}{2}\) Và AD=CD \(\Rightarrow DN=\frac{AD}{2}=\frac{CD}{2}\Rightarrow DN=CN\)
Xét tg ADC có
OA=OC (trong tg vuông hai đường chéo cắt nhau tại trung điểm mỗi đường) => DO là trung tuyến của tg ADC
DN=CN (cmt) => AN là trung tuyến của tg ADC
=> H là trọng tâm của tg ADC \(\Rightarrow\frac{HO}{DO}=\frac{1}{3}\Rightarrow\frac{HO}{DH}=\frac{1}{2}\Rightarrow\frac{HO}{1}=\frac{DH}{2}=\frac{HO+DH}{1+2}=\frac{OD}{3}\)
Mà OD=OB \(\Rightarrow\frac{DH}{2}=\frac{HO}{1}=\frac{OB}{3}=\frac{HO+OB}{1+3}=\frac{BH}{4}\Rightarrow DH=\frac{BH}{2}\Rightarrow BH=2.DH\left(dpcm\right)\)
a/ Xét tg vuông AMB và tg vuông IMA có
ˆMAI=ˆABMMAI^=ABM^ (cùng phụ với ˆAMBAMB^ )
=> tg AMB đồng dạng với tg IMA (g.g.g)
b/
Trong hình vuông hai đường chéo vuông góc với nhau
Xét tg vuông OBC và tg vuông CBD có
ˆDBCDBC^ chung => tg OBC đồng dạng với tg CBD ⇒OCDC=BCBD⇒OC.BD=BC.DC(dpcm)⇒OCDC=BCBD⇒OC.BD=BC.DC(dpcm)
c/ Kéo dài AH cắt CD tại N
Xét tg vuông ABM và tg vuông DAN có
ˆDAN=ˆABMDAN^=ABM^ (cùng phụ với ˆAMBAMB^ )
AB=AD (cạnh hình vuông)
⇒ΔABM=ΔDAN⇒ΔABM=ΔDAN (Tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> AM=DN mà AM=AD2AM=AD2 Và AD=CD ⇒DN=AD2=CD2⇒DN=CN⇒DN=AD2=CD2⇒DN=CN
Xét tg ADC có
OA=OC (trong tg vuông hai đường chéo cắt nhau tại trung điểm mỗi đường) => DO là trung tuyến của tg ADC
DN=CN (cmt) => AN là trung tuyến của tg ADC
=> H là trọng tâm của tg ADC ⇒HODO=13⇒HODH=12⇒HO1=DH2=HO+DH1+2=OD3⇒HODO=13⇒HODH=12⇒HO1=DH2=HO+DH1+2=OD3
Mà OD=OB ⇒DH2=HO1=OB3=HO+OB1+3=BH4⇒DH=BH2⇒BH=2.DH(dpcm)
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACB
a. Xét ΔABH và ΔACB có
∠A chung
∠AHB = ∠ABC = 90
⇒Đpcm
b. AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm
vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC
thay số vào và giải
c. câu c tự cm theo định lý Talet đảo
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
=>ΔABH đồng dạng với ΔACB
b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)
BH=7*24/25=6,72(cm)