Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{6}=\frac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{2}=\frac{x-y}{6-2}=-\frac{12}{4}=-3\Leftrightarrow\hept{\begin{cases}x=-3.6=-18\\y=-3.2=-6\end{cases}}\)
\(x+y=\left(-18\right)+\left(-6\right)=-24\)
\(\Delta\)ABC cân,ACB=100 độ=>CAB=CBA=40 độ
trên AB lấy AE=AD.cần chứng minh AE+DC=AB (hoặc EB=DC)
\(\Delta\)AED cân,DAE=40 độ:2=20 độ
=>ADE=AED=80 độ=40 độ+EDB (góc ngoài của \(\Delta\)EDB)
=>EDB=40 độ =>EB=ED (1)
trên AB lấy C' sao cho AC'=AC
\(\Delta\)CAD=\(\Delta\)C'AD (c.g.c)
=>AC,D=100 độ và DC,E=80 độ
vậy \(\Delta\)DC'E cân =>DC=ED (2)
từ (1) và (2) có EB=DC'
mà DC'=DC.vậy AD+DC=AB
Tam giác \(ABC\)có \(AB=AC\)nên tam giác \(ABC\)cân tại \(A\).
Do đó \(AM\)là đường phân giác trong của tam giác cũng đồng thời là đường cao của tam giác.
Nên \(\widehat{AMB}=\widehat{AMC}=90^o\).
1) Tại \(x=4\)\(\Rightarrow\)\(-3x-3x+3=-3.4-3.4+3=-21\)
2) Tại \(x=0\)\(\Rightarrow\)\(-3x-3x+3=-3.0-3.0+3=3\)
3) Tại \(x=-4\)\(\Rightarrow\)\(-3x-3x+3=-3.-4-3.-4+3=27\)