Bài 1: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Đăng từng bài thôi bạn ơi

14 tháng 8 2016

cj on ruayf hả

22 tháng 10 2015

1-4x-2x^2=3-2(x^2+2x+1)=3-(x+1)^2 nhỏ hơn hoặc bằng 3. max(....)=3 khi x=-1

8 tháng 4 2020

a)

Ta có:

( x + 1 ) ( x + 3 ) ( x + 5 ) ( x + 7 ) + 2019

= [ ( x + 1 ) ( x + 7 ) ] . [ ( x + 3 ) ( x + 5 ) ] + 2019

= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2019         ( 1 )

* Đặt x2 + 8x + 10 = a

thì ( 1 ) trở thành:

     ( a - 3 ) ( a + 5 ) + 2019

=  a2 + 2a - 15 + 2019

= a ( a + 2 ) + 2004

=> Pt đã cho chia cho a = x2 + 8x + 10 dư 2004.

Vậy ..........

b)

- Vì x / (x2 - x + 1) = 1/5 => x2 - x + 1 = 5x

Ta có:

        A = x/ (x4 + x2 + 1)

        A = x/ [( x2 - x + 1 )( x2 + x + 1 )]

        A = x2 / {5x . [( x2 - x + 1 ) + 2x ]}

        A = x/ [5x . ( 5x + 2x )]

        A = x2 / ( 5x . 7x )

        A = x2 / 35x2

        A = 1/35

Vậy A = 1/35.

6 tháng 8 2016

phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3                                                                                chia hết cho 15 là chia hết cho 3 với 5 nha

6 tháng 8 2016

2) a=-(b+c)=> a2=(-(b+c))2

a2-b2-c2=2bc

(a2-b2-c2)2=(2bc)2

a4+b4+c4-2a2b2+2b2c2-2a2c2=4b2c2

a4+b4+c4=2a2b2+2b2c2+2a2c2

2(a4+b4+c4)=(a2+b2+c2)2

Vì a2+b2+c2=14 nên 2(a4+b4+c4)=196

=>a4+b4+c4=98

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)