Vẽ đồ thị các hàm số sau và chỉ ra các khoảng đồng biến, nghịch biến của chúng. 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Nhìn vào đồ thị, ta thấy:

a) Hàm số \(y =  - 2x + 1\)nghịch biến trên \(\mathbb{R}\)

b) Hàm số \(y =  - \frac{1}{2}{x^2}\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\); nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Vẽ đồ thị \(y = 3x + 1;y =  - 2{x^2}\)

a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)

b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y =  - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)

Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y =  - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)

loading...

Tọa độ đỉnh là I(1;1)

mà a=1>0

nên hàm số đồng biến khi \(x\in\left(1;+\infty\right)\) và nghịch biến khi \(x\in\left(-\infty;1\right)\)

13 tháng 4 2017

a) Tập xác định D = R

Bảng biến thiên

Đồ thị hàm số

Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1

Giao điểm với trục tung là P(0,-1)

Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)

b)

Tập xác định D = R

Đồ thị hàm số

Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)

Giao điểm với trục tung là P(0,2)

Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)



30 tháng 3 2017

a) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,-1)

+ Giao với trục hoành Q(2, 0)

b) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,4)

+ Giao với trục hoành Q(2, 0)

c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0

Bảng biến thiên

Đồ thị hàm số

d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1

Bảng biến thiên

Đồ thị hàm số

30 tháng 12 2022

Bài 1:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}-\dfrac{b}{2}=1\\0^2+b\cdot0+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=6\end{matrix}\right.\)

Bài 2:

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-4}{2\cdot\left(-1\right)}=2\\y=-\dfrac{4^2-4\cdot\left(-1\right)\cdot0}{4\cdot\left(-1\right)}=\dfrac{16}{4}=4\end{matrix}\right.\)

=>Hàm số đồng biến khi x<2 và nghịch biến khi x>2

27 tháng 4 2022

Y=2x²-3x+1

23 tháng 7 2019

1. \(y=f\left(x\right)=x^2+2\left|x\right|-1\)

TXĐ: D=R

a) Xét tính chẵn lẻ

Với mọi x thuộc D => -x thuộc D

Xét : \(f\left(-x\right)=\left(-x\right)^2+2\left|-x\right|-1=x^2+2\left|x\right|-1=f\left(x\right)\)

=> y= f(x) là hàm chẵn

b)  Xét tính đồng biến, nghịch biến

Với mọi  \(x_1>x_2\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2+2\left|x_1\right|-1\right)-\left(x_2^2+2\left|x_2\right|-1\right)\)

\(=\left(x_1^2-x_2^2\right)+2\left(\left|x_1\right|-\left|x_2\right|\right)\)

+) \(x_1;x_2\in\left(0;+\infty\right)\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(x_1-x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2+2\right)>0\)

=> \(f\left(x_1\right)>f\left(x_2\right)\)

=> Hàm số đồng biến  trên \(\left(0;+\infty\right)\)

+) \(x_1;x_2\in\left(-\infty;0\right)\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(-x_1+x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2-2\right)< 0\)

=> \(f\left(x_1\right)< f\left(x_2\right)\)

> Hàm số nghịch biến trên \(\left(-\infty;0\right)\)

2.

 \(y=f\left(x\right)=x+\frac{1}{x}\)

TXD: D=R\{0}

a) Xét tính chẵn lẻ.

Với mọi x thuộc D => -x thuộc D

Có \(f\left(-x\right)=-x+\frac{1}{-x}=-\left(x+\frac{1}{x}\right)=-f\left(x\right)\)

=> y= f(x) là hàm lẻ

Em tự làm tiếp nhé. Tương tự như trên