Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
Lời giải của bạn Thái và Hà chưa hợp lý, còn lời giải của bạn An hợp lý, vì :
- Hai bạn Thái và Hà phân tích đa thức thành nhân tử chưa triệt để, vì ở lời giải của hai bạn, có nhân tử vẫn phân tích được tiếp.
- Còn ở bạn An thì phân tích đã hợp lý, vì trong các nhân tử, không có nhân tử nào phân tích được tiếp.
1.
Ta có: hình thang ABCD có AB // CD ⇒ ∠A + ∠D = 180o (hai góc trong cùng phía)
Ta có: ∠A = 3∠D (gt)
⇒ 3∠D + ∠D = 180o ⇒ 4∠D = 180o ⇒ ∠D = 45o ⇒ ∠A = 3.45o = 135o
∠B + ∠C = 180o (hai góc trong cùng phía)
∠B - ∠C = 30o (gt)
⇒ 2∠B = 180o + 30o = 210o ⇒ ∠B = 105o
∠C = ∠B - 30o = 105o – 30o = 75o
2.
Trong hình thang ABCD, ta có A và C là hai góc đối nhau.
a. Trường hợp A và B là 2 góc kề với cạnh bên.
⇒ BC // AD
∠A + ∠B = 180o (hai góc trong cùng phía bù nhau)
⇒ ∠B = 180o - ∠A = 180o – 60o = 120o
∠C + ∠D = 180o (hai góc trong cùng phía bù nhau)
⇒ ∠D = 180o - ∠C = 180o – 130o = 50o
b. Trường hợp A và D là 2 góc kề với cạnh bên.
⇒ AB // CD
∠A + ∠D = 180o (hai góc trong cùng phía bù nhau)
⇒ ∠D = 180o - ∠A = 180o – 60o = 120o
∠C + ∠B = 180o (hai góc trong cùng phía bù nhau)
⇒ ∠B = 180o - ∠C = 180o – 130o = 50o