Mạch điện xoay chiều gồm biến trở,cuộn dây và tụ điện ghép nối tiếp.Đặt vào hai đầu đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Hiện tượng cộng hưởng xảy ra khi
Z_L = Z_C \Leftrightarrow \omega L = \frac{1}{\omega C}
\Rightarrow \frac{1}{LC\omega ^2}= 1

24 tháng 8 2016

Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)

\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)

Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)

A đúng

24 tháng 8 2016

Ta có: L = R^2 C = r^2 C
\Rightarrow Z_L. Zc = R^2 = r^2

Điện áp hiệu dụng của đoạn mạch RC gấp \sqrt{3} lần điện áp hiệu dụng hai đầu cuộn dây 
I. \sqrt{R^2 + Z_c^2} = \sqrt{3}.I. \sqrt{r^2 + Z_L^2}\Leftrightarrow R^2 + Z_c^2 = 3 (r^2 + Z_L^2)
\Leftrightarrow Z_L.Zc + Z_c^2 = 3.Z_L.Zc + 3 Z_L^2
\Leftrightarrow Zc(Z_L + Zc) = 3 Z_L (Z_L + Zc)
\Rightarrow Zc = 3Z_L \Rightarrow R^2 = 3 Z_L^2 \Rightarrow R = Z_L\sqrt{3}
=> Hệ số công suất của đoạn mạch là
cos \varphi = \frac{R + r}{\sqrt{(R + r)^2 + (Z_L - Zc)^2}} = \frac{2R}{\sqrt{4R^2 + 4 Z_L^2}} = \frac{2\sqrt{3}Z_L}{\sqrt{4.3. Z_L^2 + 4 Z_L^2}} = \frac{\sqrt{3}}{2}

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

Công suất tiêu thụ của biến trở:

$P_R=\frac{U^2R}{(R+r)^2+(Z_L-Z_C)^2}=\frac{U^2}{R+\frac{r^2+(Z_L-Z_C)^2}{R}+2r}\leq \frac{U^2}{2\sqrt{r^2+(Z_L-Z_C)^2}+2r}$

Do đó, $P_R$ đạt giá trị lớn nhất khi $R=\sqrt{(Z_L-Z_c)^2+r^2}\Leftrightarrow Z_{AB}^2=75^2+(75+r)^2-r^2$

Giờ chỉ cần thử các giá trị nguyên ta thu được $r=21\Omega$ và $Z_{AB}=120\Omega$, tức đáp án $B$ là đáp án đúng.

25 tháng 1 2016

Từ ĐK đầu bài ta có: Zc^{2}=r^{2}+Zl^{2}=r^{2}+(Zl-Zc)^{2}\Rightarrow Zc=2Zl=100\Rightarrow \omega ^{2}=\frac{1}{2LC}
tần số dao động riwwng của mạch là:(80\Pi )^{2}=\frac{1}{L(C-\Delta C)}\Rightarrow L.C-L\Delta C=\frac{1}{80^{2}.10}\Rightarrow \frac{1}{2\omega^{2}}-\frac{50}{\omega }.\frac{0,125.10^{-3}}{\Pi }=\frac{1}{80^{2}.10}
giải phương trình bâc 2 này ra ta được: \omega =40\Pi

25 tháng 1 2016

Z=Z_{C}=Z_{Lr}=100\Omega

Z_{C}=2Z_{L}\Rightarrow \frac{1}{\omega C}=2\omega L\Rightarrow \frac{1}{LC}=2\omega ^{2}(1)

{\omega _{0}}^{2}=\frac{1}{L(C+\Delta C)}(2)

Lấy (1) chia (2) ta được:  \frac{2\omega ^{2}}{{\omega _{0}}^{2}}=\frac{C+\Delta C}{C}


 

23 tháng 8 2016

x_1 = 4 cos (\omega t - \frac{\pi}{6}) cm; x_2 = 4 sin (\omega t )(cm)
x_1 = 4 cos (\omega t - \frac{\pi}{6}) cm; x_2 = 4 cos (\omega t - \frac{\pi}{2})(cm)
Sử dụng MTBT \Rightarrow x = 4\sqrt{3}cos (\omega t - \pi/3)cm

chọn C

29 tháng 5 2016

Bài này thì có vẹo gì đâu bạn.

\(u=100\sqrt 2\cos(100\pi t)(V)\)

\(Z_L=\omega L = 10\Omega\)

\(Z_C=\dfrac{1}{\omega C}=20\Omega\)

Tổng trở \(Z=\sqrt{r^2+(Z_L-Z_C)^2}=10\sqrt 2 \Omega\)

\(\Rightarrow I_o=\dfrac{U_0}{Z}=10A\)

\(\tan\varphi=\dfrac{Z_L-Z_C}{R}=-1\Rightarrow \varphi=-\dfrac{\pi}{4}\)

Suy ra: \(\varphi=\dfrac{\pi}{4}\)

Vậy \(i=10\cos(100\pi t +\dfrac{\pi}{4})\) (A)

29 tháng 5 2016

Hình đâu bạn ơi.

25 tháng 5 2015

khi w=wo trong mạch xảy ra cộng hưởng ,cường độ dòng điện hiêu dụng là I max,còn khi w=w1 hoặc w=w2 thì dòng điện trong mạch có cùng giá trị hiệu dụng

nên \(\omega_0^2=\omega_1\omega_2=\frac{1}{LC}\Rightarrow\omega_2L=\frac{1}{\omega_1C}\Rightarrow Z_{L2}=Z_{C1}\)

\(I_{max}=\frac{U}{R}\)

\(I=\frac{U}{\sqrt{R^2+\left(Z_{L1}-Z_{C1}\right)^2}}=\frac{U}{\sqrt{R^2+\left(Z_{L1}-Z_{L2}\right)^2}}\)

Theo giả thiết: \(I=\frac{I_{max}}{\sqrt{5}}\)

\(\Rightarrow\frac{U}{\sqrt{R^2+\left(Z_{L1}-Z_{L2}\right)^2}}=\frac{U}{\sqrt{5}R}\Rightarrow R^2+\left(Z_{L1}-Z_{L2}\right)^2=5R^2\)

\(\Rightarrow\left|Z_{L1}-Z_{L2}\right|=2R\)

\(\Rightarrow L\left(\omega_2-\omega_1\right)=2R\Rightarrow\frac{1}{\pi}.150\pi=2R\Rightarrow R=75\Omega\)

Đáp án B.

2 tháng 1 2017

hay