Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)
\(M=x^2+11xy-y^2\)
* \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)
Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3
Không chắc nha
a, \(\left|x-3,5\right|+\left|x-\frac{1}{3}\right|=0\)
\(\hept{\begin{cases}x-3,5\ge0\forall x\\x-\frac{1}{3}\ge0\forall x\end{cases}\Rightarrow\left|x-3,5\right|+\left|x-\frac{1}{3}\right|\ge0\forall x}\)
Dấu ''='' xảy ra <=> \(x-3,5=0\Leftrightarrow x=3,5\)
\(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)
b, \(\left|x\right|+x=\frac{1}{3}\Leftrightarrow\left|x\right|=\frac{1}{3}-x\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=-\frac{1}{3}+x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0\ne-\frac{1}{3}\end{cases}\Leftrightarrow}x=\frac{1}{6}}\)
c, \(\left|x-2\right|=x\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-2\ne0\\x=1\end{cases}}}\)
d, tương tự c
Sửa ý a) của bạn @akirafake
a) \(\left|x-3,5\right|+\left|x-1,3\right|=0\)
Ta có : \(\left|x-3,5\right|+\left|x-1,3\right|=\left|-\left(x-3,5\right)\right|+\left|x-1,3\right|=\left|3,5-x\right|+\left|x-1,3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|3,5-x\right|+\left|x-1,5\right|\ge\left|3,5-x+x-1,5\right|=\left|2\right|=2\)
mà \(\left|x-3,5\right|+\left|x-1,3\right|=0\)( vô lí )
Vậy không có giá trị của x thỏa mãn
b) \(\left|x\right|+x=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{3}-x\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}-x\\x=x-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{3}\\0x=-\frac{1}{3}\end{cases}\Rightarrow}2x=\frac{1}{3}\Rightarrow x=\frac{1}{6}\)
c) \(\left|x\right|-x=\frac{3}{4}\)
=> \(\left|x\right|=\frac{3}{4}+x\)
=> \(\orbr{\begin{cases}x=\frac{3}{4}+x\\x=-x-\frac{3}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}0x=\frac{3}{4}\\2x=-\frac{3}{4}\end{cases}}\Rightarrow2x=-\frac{3}{4}\Rightarrow x=-\frac{3}{8}\)
d) \(\left|x-2\right|=x\)
=> \(\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\\2x=2\end{cases}}\Rightarrow2x=2\Rightarrow x=1\)
e) \(\left|x+2\right|=x\)
=> \(\orbr{\begin{cases}x+2=x\\x+2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=-2\\2x=-2\end{cases}}\Rightarrow2x=-2\Rightarrow x=-1\)
Thế x = -1 ta được :
\(\left|-1+2\right|=-1\)( vô lí )
=> Không có giá trị của x thỏa mãn
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{99\cdot101}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{303}=\frac{49}{303}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{2550}\)
\(=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{50\cdot51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}\)
\(=\frac{16}{51}\)
1. \(\frac{a}{b}\)cùng dấu thì lớn hơn 0
\(\frac{a}{b}\)khác dấu thì bé hơn 0
2. mik không hiểu đề lắm
1:a/b cùng đấu thì lớn hơn o
a/b khác dấu thì bé hơn o
2: có x =a/m=a+a/2m, y =b/m=b+b/2m
Vì x<y =>a<b=>a+a<a+b=>a+a/2m<a+b/2m=>x<z(1)
Vì a<b =>a+b<b+b=>a+b/2m<b+b/2m=>z<y
Từ đó =>x<z<y
a) ta có: \(-3x=5y\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
ADTCDTSBN
có: \(\frac{y}{-3}=\frac{x}{5}=\frac{y-x}{-3-5}=\frac{20}{-8}=\frac{5}{2}\)
=> y/-3 = 5/2 => y = -15/2
x/5 = 5/2 => x = 25/2
KL:...
b) ta có: \(\frac{2x}{3}=\frac{3y}{4}\Rightarrow8x=9y\Rightarrow\frac{x}{9}=\frac{y}{8}\)
\(\frac{3y}{4}=\frac{4z}{5}\Rightarrow15y=8z\Rightarrow\frac{y}{8}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{8}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{9}=\frac{y}{8}=\frac{z}{15}=\frac{x+y+z}{9+8+15}=\frac{49}{32}\)
=> x/9 = 49/32 => x = ...
...
Lần 1
Lần 2 với chữ thập phân thứ nhất