Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a.
Xét tam giác ABO và tam giác CDO có:
AO = CO (BO là trung truyến của tam giác ABC)
AOB = COD (2 góc đối đỉnh)
BO = DO (gt)
=> Tam giác ABO = Tam giác CDO (c.g.c)
=> BAO = DCO (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD.
b.
BO là trung tuyến của tam giác ABC
=> O là trung điểm của AC
=> AO = CO = \(\frac{1}{2}AC\) (1)
- BO = DO (gt) => CO là trung tuyến của tam giác BCD
- BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD
=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD
=> I là trọng tâm của tam giác BCD.
=> IO = \(\frac{1}{3}OC\) (2)
Thay (1) vào (2), ta có:
IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)
\(\Rightarrow AC=6\times IO\)
c.
AB // CD
=> EBM = DCM (2 góc so le trong)
Xét tam giác EBM và tam giác DCM có:
EBM = DCM (chứng minh trên)
BM = CM (M là trung điểm của BC)
BME = CMD (2 góc đối đỉnh)
=> Tam giác EBM = Tam giác DCM (g.c.g)
=> BE = CD (2 cạnh tương ứng)
mà CD = AB (tam giác ABO = tam giác CDO)
=> BE = AB.
Chúc bạn học tốt
a. Xét tam giác ABM và tam giác DCM có:
+, BM = MC ( AM là đường trung tuyến của tam giác ABC )
+, Góc AMB = góc DMC ( 2 góc đối đỉnh )
+, AM = MD ( gt )
=> tam giác ABM = tam giác DCM ( c.g.c )
=> AB = CD ( 2 cạnh tương ứng )
=> góc BAM = góc CDM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( đpcm )
hình tự vẽ nha bn!
a) qua M kẻ đường thẳng // vs BD cắt AC tại E
tam giác DBC có ME//BD,M là trung điểm của BC=> E là tđ của DC=> ED=EC (1)
tam giác AME có ID//EM (BD//ME), I là tđ của AM=> D là tđ của AE => DA=DE (2)
(1),(2)=> ED=EC=DA
ta có AD+DE+EC=AC=> AD+AD+AD=AC=> AC=3AD
b) tam giác AME có I là tđ của AM,D là tđ của AE=> ID là đường trung bình của tam giác AME=> ID=1/2ME (3)
tam giác BDC có M là tđ của BC,E là tđ của DC=> ME là đtb của tam giác BDC=> ME=1/2BD (4)
(3),(4)=> ID=1/4BD
a: Xét ΔiAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
=>ΔIAB=ΔICD
b: Xét ΔBAC có
BI,AM là trung tuyến
BI cắt AM tại G
=>G là trọng tâm
=>BG=2/3BI=2/3ID
c: Xét ΔDAC có
DI,AN là trung tuyến
DI cắt AN tại K
=>K là trọng tâm
=>DK=2/3DI=2/3*1/2*DB=1/3DB
BG=2/3BI
=>BG=2/3*1/2BD=1/3BD
BG+GK+KD=BD
=>GK=1/3BD=DK=BG
câu a
gọi N là điểm thuộc trên AC sao cho N là trung điểm DC
có M N là đường trung bình trong tam giác BDC
vậy MN // ID
xét tam giác AMN có I là trung điểm và ID//MN vậy ID là đường trung bình hay D là trung điểm AN
Ta có AD =ND = NC vậy 3AD = AC
câu b
ID = 1/2MN mà MN = 1/2 BD vậy ID = 1/4 BD
a/
Hai tg ABD và tg BCD có chung đường cao từ B->AC nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AD}{CD}=\dfrac{1}{2}\)
Hai tg ABD và tg BCD có chung BD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\) đường cao từ A->BD / đường cao từ C->BD = \(\dfrac{1}{2}\)
Hai tg ABI và tg BCI có chung BI nên
\(\dfrac{S_{ABI}}{S_{BCI}}=\)đường cao từ A->BD / đường cao từ C->BD = \(\dfrac{1}{2}\)
\(\Rightarrow S_{ABI}=\dfrac{1}{2}S_{BCI}\) (1)
Hai tg BMI và tg BCI có chung đường cao từ I->BC nên
\(\dfrac{S_{BMI}}{S_{BCI}}=\dfrac{BM}{BC}=\dfrac{1}{2}\Rightarrow S_{BMI}=\dfrac{1}{2}S_{BCI}\) (2)
Từ (1) và (2) \(\Rightarrow S_{ABI}=S_{BMI}\) Hai tg này có chung đường cao từ B->AM nên
\(\dfrac{S_{ABI}}{S_{BMI}}=\dfrac{AI}{MI}=1\Rightarrow AI=MI\)
b/
Hai tg ABI và tg BMI có chung đường cao từ B->AM và AI=MI
\(\Rightarrow S_{ABI}=S_{BMI}\) (1)
Hai tg BMI và tg BCI có chung đường cao từ I->BC nên
\(\dfrac{S_{BMI}}{S_{BCI}}=\dfrac{BM}{BC}=\dfrac{1}{2}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{S_{ABI}}{S_{BCI}}=\dfrac{1}{2}\)
Hai tg ABI và tg BCI có chung BI nên
\(\dfrac{S_{ABI}}{S_{BCI}}=\) đường cao từ A->BD / đường cao từ C->BD =\(\dfrac{1}{2}\)
Hai tg AID và tg CID có chung ID nên
\(\dfrac{S_{AID}}{S_{CID}}=\)đường cao từ A->BD / đường cao từ C->BD =\(\dfrac{1}{2}\)
Hai tg AID và tg CID chung đường cao từ I->AC nên
\(\dfrac{S_{AID}}{S_{CID}}=\dfrac{AD}{CD}=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}CD\)