Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có (a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2b+3c2a+6abc
=a3+b3+c3+3a2b+3b2a+3abc+3b2c+3c2b+3abc+3a2c+3c2a+3abc-3abc
=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
=>(a+b+c)3 =a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc (1)
Thay a+b+c=0 vào (1) ta được:
0=a3+b3+c3+3.0(ab+bc+ac) -3abc
<=>0=a3+b3+c3-3abc
<=>a3+b3+c3=3abc
1, Từ \(a+b+c=0\Rightarrow a+b=-c\)
Xét \(a^3+b^3+c^3=\left(a+b\right)^3-3a^2b-3ab^2+c^3\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\left(I\right)\)
Mà \(a+b=-c\) thay vào \(\left(I\right)\) ta được
\(a^3+b^3+c^3=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc\)
Vậy với \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
1)Nếu x-1 >= 0 thì x>=1
=>x2 – 3x + 2 + |x – 1| = 0
<=>x2-3x+2+x-1=0
<=>x2-2x+1=0
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy S={1}
2)
ĐKXĐ:
x(x-2)\(\ne\)0
<=>x\(\ne\)0 và x-2\(\ne\)0
<=>x\(\ne\)0 và x\(\ne\)2
\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)
<=>\(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}-\frac{2}{x\left(x-2\right)}=0\)
=>x(x+2)-(x-2)-2=0
<=>x2+2x-x+2-2=0
<=>x2+x=0
<=>x(x+1)=0
<=>x=0 (ko thỏa ĐKXĐ) hoặc x+1=0
<=>x=-1
Vậy S={-1}
\(\frac{2x+2}{3}< 2+\frac{x-2}{2}\Leftrightarrow\frac{2x+2}{3}-2-\frac{x-2}{2}< 0\)
\(\Leftrightarrow\frac{4x+4-12-3x+6}{6}< 0\Leftrightarrow\frac{x-2}{6}< 0\)
\(\Rightarrow x-2< 0\Leftrightarrow x< 2\) vì 6 > 0
Trả lời:
\(\frac{2x+2}{3}< 2+\frac{x-2}{2}\)
\(\Leftrightarrow\frac{2x+2}{3}-2-\frac{x-2}{2}< 0\)
\(\Leftrightarrow\frac{2\left(2x+2\right)-12-3\left(x-2\right)}{6}< 0\)
\(\Leftrightarrow\frac{4x+4-12-3x+6}{6}< 0\)
\(\Leftrightarrow\frac{x-2}{6}< 0\)
\(\Leftrightarrow x-2< 0\)( vì 6 > 0 )
\(\Leftrightarrow x< 2\)
Vậy x < 2 là nghiệm của bất phương trình.
x 0 2
a) \(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{3}-2\)
b) \(\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}=\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)=\frac{4}{x-4}\)
a, \(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}=\sqrt{3}-\sqrt{4}\)
b, Với x > 0 ; x \(\ne\)4
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right)\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}\pm2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+4}{\left(\sqrt{x}\pm2\right)}=\frac{6}{\left(\sqrt{x}\pm2\right)}\)
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
A = ( 1002 - 992 ) + ( 982 - 972 ) + ... + ( 22 - 12 )
A = ( 100 - 99 )(100 + 99 ) + (98 - 97 )(98 + 97) + ... + (2-1)(2+1)
A = 199 + 195 + .... + 3
Tổng A có ss hạng là:
( 199 - 3 ) : 4 + 1 = 50 ( số )
Tổng A bằng:
( 199 + 3 ) x 50 : 2 = 5050
c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
C = a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + b2 + c2 + 2ab - 2bc - 2ac - 2(a2 + 2ab + b2)
C = 2a2 + 2b2 + 2c2 + 4ab - 2a2 -4ab - 2b2
C = 2c2
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
B = (22 - 1)(22 + 1)(24 + 1) ... (264 + 1) + 12
B = ( 24 - 1)(24 + 1)... (264 + 1) + 12
B = (28 - 1)... (264 + 1) + 12
B = (28 - 1)(28+1)... (264 + 1) + 12
B = (216-1)(216+1)... (264 + 1) + 12
B = (232 - 1)(232+1)... (264 + 1) + 12
B = (264 - 1)(264 +1)+1
B = 2128 - 1 + 1
B = 2128
\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)
\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)
Cũa mị:>>>
Tham khảo ạ !!!
A = 1002 - 992 + 982 - 972 + ...... + 22 - 12
= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )
= 1 + 2 + 3 + ......... + 99 + 100
= ( 100 + 1 ) . 100 : 2 = 5050
B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12
= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1
= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1
= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1
= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1
= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1
= ( 264 - 1 ) ( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2
= 2c2
a) \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
a) Ta có: \(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)
\(=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)(đpcm)
b) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)(đpcm)
đặt x/a=y/b=z/c=k
=>x=a.k,
y=b.k
z=c.k
=>(a^2k^2+b^2k^2+c^2k^2)(a^2+b^2+c^2)=k^2.(a^2+b^2+c^2)^2(1)
(ax+by+cz)^2=(a.a.k+b.b.k+c.c.k)^2=(a^2.k+b^2.k+c^2.k)^2
=k^2(a^2+b^2+c^2)(2)
từ (1)(2)=> nếu x/a=y/b=z/c thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
=>