Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C E M N A D B I
a, Gọi D là trung điểm AB
Có \(I\in\)Đường trung trực AB
\(\Rightarrow I\)cách đều A và B
\(\Rightarrow\Delta IAB\)cân tại \(I\)
Có: - \(ID\) là trung trực \(AB\)\(\Rightarrow ID\perp AB\)
- \(\Delta ABC\)vuông tại \(A\)\(\Rightarrow AC\perp AB\)
=> ID // AC
Ta có :
- ID // AC
- D là trung điểm AB
=> I là trung điểm BC
\(\Rightarrow IA=IC=IB\)
\(\Rightarrow\Delta IAC\)cân tại \(I\)
b, Xét \(\Delta CMB\)có :
- \(MI\perp BC\)
- \(CA\perp MB\)
- \(CA\Omega MI=N\)
=> N là trực tâm \(\Delta MCB\)
\(\Rightarrow BN\perp MC\Leftrightarrow BE\perp MC\)
c, Xét \(\Delta MCB\)có : \(MI\perp BC\)tại \(I\)
và \(IC=IB\)
\(\Rightarrow\Delta MCB\)cân tại M => MI là đường phân giác \(\widehat{M}\)
\(\Rightarrow\hept{\begin{cases}\widehat{CMI}=\widehat{IMB}\\MC=MB\end{cases}}\)
Xét \(\Delta ACM\)và \(\Delta EBM\)
Có :- \(\widehat{CAM}=\widehat{BEM}=90^0\)
- \(MC=MB\)
- \(\widehat{CMI}=\widehat{IMB}\)
\(\Rightarrow\Delta ACM\)=\(\Delta EBM\)\(\left(ch-gn\right)\)
\(\Rightarrow ME=MA\)
\(\Delta MEA\)cân tại \(M\)
\(\widehat{MEA}=\frac{180^0-\widehat{AME}}{2}\)
\(\widehat{MCB}=\frac{180^0-\widehat{CMB}}{2}\)
Mà \(\widehat{AME}=\widehat{CMB}\)
\(\Rightarrow\widehat{MEA}=\widehat{MCB}\)
Mà 2 góc ở vị trí đồng vị
\(\Rightarrow\)EA // BC
bài 3
bạn tự kẻ hình nha
a)*Tam giác IAB có I thuộc trung trực AB
=> Tam giác IAB cân tại I
*Có IAC = 90 – BAI
BCA = 90 – ABC (mà ABC = BAI)
=>Tg IAC cân tại I
b)*Tg BMC có đg cao CA cắt đg cao MI tại N
=>N là trực tâm
=>BE vg góc MC
c)*M thuộc trung trực BC => MB = MC => MBC = MCB
*N thuộc trung trực BC => NB = NC => NBC = NCB
=> Tg BAC = Tg CEB (cgc)
=> MA = ME => M thuộc trung trực AE
* Gọi J là giao của MI và AE
=> Tg MJA = Tg MJE (cgc)
=> MI vuông góc AE (mà MI vg góc BC)
=>AE // BC d)* Có NB = NC (cmt)
mà EB = AC (hai cạnh tương ứng do Tg BAC = Tg CEB)
=>NA = NE
=>Tg NAE cân tại N
=>NAE = NEA
mà NEA = NBC (slt) = NCB (Tg NCB cân taih N – cmt ) = IAC (Tg IAC cân tại I – cmt)
=>NAE = IAC
=>AK là tpg IAE ( K là giao của AN và IE)
mà AK cx là trung tuyến Tg IAE ( do N là trọng tâm – gt )
=>Tg IAE cân tại A
=>IA = IE
mà IA = IC (Tg IAC cân tại I – cmt)
=>IE = IC
=>Tg IEA = Tg EIC (cgc)
=>IA = EC
mà EC = BA (cmt)
=>IA = BA
=>Tg IAB đều
=>ABC = 60
=>Tg ABC cần có góc ABC = 60 để N là trọng tâm Tg IAE
k cho mk nha
a,
Ta có :
Δ ABC vuông tại A
Mà AI là đường trung tuyến của BC
=> AI = BI = IC
Xét Δ AIB, có :
AI = BI (cmt)
=> Δ AIB cân tại A
Xét Δ AIC, có :
AI = AC (cmt)
=> Δ AIC cân tại I
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo tại link trên!
a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác vuông ABE và tam giác vuông ACD có:
AB = AC (gt)
\(\widehat{ABE}=\widehat{ACD}\)
\(\Rightarrow\Delta ABE=\Delta ACD\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BE=CD;AE=AD\)
b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.
Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.
Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)
Từ đó suy ra tam giác AMC vuông cân tại M.
c) Gọi giao điểm của DH, AK với BE lần lượt là J và G.
Do DH và AK cùng vuông góc với BE nên ta có
\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)
\(\Rightarrow HK=AD\)
Mà AD = AE nên HK = AE. (1)
Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)
\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)
Suy ra AG là phân giác góc IAE.
Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)
\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)
Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE (2)
Từ (1) và (2) suy ra HK = KC.
giup mik bai nay voi
lufff