Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời
a.Vì AB=AC(gt)=> góc ABC=góc ACB ( tam giác ABC vuông cân)
mặt khác BK=KC(trung điểm BC)
=> tam giác AKB=tam giác AKC (c.g.c)
b.Vì tam giác AKB=tam giác AKC (theo câu a)
=> góc AKB=góc AKC
Mà góc AKB+góc AKC=180°
=>góc AKB=góc AKC=90°=> AK vuông góc với BC
c.Vì EC vuông góc với BC
AK vuông góc với BC
=>EC//AK =>E//K
phần a , có ab = ac , bk = kc , \(\widehat{b}\)=\(\widehat{c}\). phần b , có NC vuông vs BC , AK vuông BC [ tc tam giác vuông cân] suy ra chúng song song vì cùng vuông vs BC , phần c có hai góc a bằng 90 độ , góc B bằng góc N do cùng phụ vs góc BCN , ac chung suy ra hai tam giác BCA và ACN bằng nhau , suy ra CN =CB
a) Ta có: ABEˆ=12ABQˆ(BE là tia pg)
ABNˆ=12ABCˆ(BD là tia pg)
⇒ABEˆ+ABNˆ=12ABQˆ+12ABCˆ
=12(ABQˆ+ABCˆ)=12.180o=900=DBEˆk
Áp dụng t/c đoạn thẳng nối trung điểm của 2 cạnh trong 1 tam giác thì // với cạnh còn lại
→MN // BC hay MDMD // BC.BC.
⇒MDBˆ=DBPˆ
mà DBPˆ=MBDˆ
⇒MDBˆ=MBDˆ⇒ΔMBD
⇒MB=MD(1)
Do MD // BC hay ME // BQ ⇒MEBˆ=EBQˆ
mà EBQˆ=MBEˆ⇒MEBˆ=MBEˆ.
⇒ΔMEB⇒ΔMEB cân tại M ⇒ME=MB(2)
Lại có: MA=MB(gt)(3)
Từ (1);(2);(3)⇒MB=MD=ME=MA..
Xét ΔAMD;ΔBMEΔAMD;ΔBME:
MA=MB(cmt)
AMDˆ=BMEˆ(đ2)
MD=ME(cmt)
⇒ΔAMD=ΔBME(c.g.c)⇒ΔAMD=ΔBME(c.g.
⇒ADMˆ=BEMˆ
mà 2 góc này ở vị trí so le trong ⇒AD⇒AD // BE.
⇒DBEˆ+ADBˆ=180o (trong cùng phía)
⇒90o+ADBˆ=180o⇒ADBˆ=90o
⇒BD⊥AP.
A B C D F A B C D F A B C D E F H K a. CM AB=AF
Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF
Xét tam giác AEB và tam giác AEF có
\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)
AE chung
\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)
=> tam giác AEB=tam giác AEF (g.c.g)
=>AB=AF(2 cạnh tương ứng)
b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)
xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt)
=>HFKD là hình bình hành (dhnb)
Nên DH=FK,DH//FK (t/c)
c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết )
a) Ta có: góc x'Oy + góc yOz + góc zOx = 180 độ
=> góc xOz = 180 độ - (góc x'Oy + góc yOz) = 180 độ - góc x'Oz = 180 độ - 150 độ = 30 độ
Do Oz là tia phân giác của góc xOy nên :
góc xOz = góc zOy = góc xOy/2
=> góc xOy = 2. góc xOz = 2. 30 độ = 60 độ
b) Ta có: góc xOz = góc x'Oz' (đối đỉnh)
góc zOy = góc y'Oz' (đối đỉnh)
mà góc xOz = góc zOy (gt)
=> góc x'Oz' = góc y'Oz'
=> Oz' là tia phân giác của góc x'Oy'