Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n^2 + 2n + 7 chia hết cho n+2
=>n.n + 2n + 7 chia hết cho n+2
=>n(n+2) + 7 chia hết cho n+2
do n(n+2) chia hết cho n+2 nên 7chia hết cho n + 2
do n thuộc N nên n+2 thuộc N
=>n+2 thuộc U(7)
=>n+2 thuộc / \ bốn cái này là dấu ngoặc trong tập hợp nha
\ 1;7/
Mà n thuộc n nên n=5
vậy n = 5
a) Ta có : 11 = 1 . 11 = 11 . 1
Lập bảng :
x | 1 | 1 |
y | 11 | 1 |
Vậy ...
b) Ta có : 12 = 1. 12 = 12.1 = 2.6 = 6.2 = 3.4 = 4.3
Do 2x + 1 là số lẽ => (2x + 1)(3y - 2) = 1 . 12 = 3.4
Lập bảng :
2x + 1 | 1 | 3 |
3y - 2 | 12 | 4 |
x | 0 | 2 |
y | ko thõa mãn đề bài | 2 |
Vậy...
c ) 1 + 2 + 3 + ........ + X = 55
<=> ( 1 + X ) x ( X : 2 ) = 55
<=> ( 1 + X ) x \(\frac{X}{2}\) = 55
<=> \(\frac{\left(1+X\right)\times X}{2}=55\)
\(\Leftrightarrow\frac{X+X^2}{2}=55\)
\(\Leftrightarrow X^2+X=110\)
\(\Leftrightarrow X^2+X-110=0\)
\(\left(a=1;b=1;c=-110\right)\)
\(\Delta=b^2-4ac\)
\(\Delta=1^2-4.1.\left(-110\right)\)
\(\Delta=441\)
\(\sqrt{\Delta}=\sqrt{441}=21\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+21}{2.1}=10\) ( nhận ) ( vì 10 là số tự nhiên thuộc N nên nhận )
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-21}{2.1}=-11\) ( loại ) ( vì -11 không phải là số tự nhiên , không thuộc N nên loại )
Vậy x = 10
Ta có :
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(1-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}>1\)
\(\Rightarrow\)\(A>1\)
Vậy \(A>1\)
Chúc bạn học tốt ~
Ko cần dài dòng vậy đâu,A=\(\frac{5^2}{1.6}+\left(\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\right)\)
Ta thấy \(\frac{5^2}{1.6}>1\)và tổng trong ngoặc >0 nên =>A>1
1/2(-5x+1)-|-2020^0|= -(2-x)+1
<=> -5/2x +1/2 - 1=-2+x+1
<=> -5/2x-1/2=x-1
<=> -5/2x-1/2-x+1=0
<=> -7/2x+1/2=0
<=> -7/2x=-1/2
<=>x=-1/7
Vậy x=-1/7
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}=\frac{2019}{2020}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}_{ }-\frac{1}{x+1}=\frac{2019}{2020}\)
\(1-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\frac{1}{x+1}=1-\frac{2019}{2020}\)
\(\frac{1}{x+1}=\frac{1}{2020}\)
=>x+1=2020
=>x=2019