Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả thiết \(\Leftrightarrow a^2+2a+1+b^2+4b+4+c^2+6c+9\le2010\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(a+2b+3c\right)+14\le2010\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(a+2b+3c\right)\le1996\)
\(\Leftrightarrow2\left(a+2b+3c\right)\le1996-a^2-b^2-c^2\)
Ta có: \(A=ab+b\left(c-1\right)+c\left(a-2\right)\)
\(A=ab+bc+ca-a-2b-3c+a+b+c\)
\(2A=2\left(ab+bc+ca\right)-2\left(a+2b+3c\right)+2\left(a+b+c\right)\)
\(2A\ge2ab+bc+ca+a^2+b^2+c^2+1996+2\left(a+b+c\right)=\left(a+b+c\right)^2+2\left(a+b+c\right)+1-1997\) \(2A\ge\left(a+b+c-1\right)^2-1997\)
\(A\ge-\frac{1997}{2}\)
Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a =b =c = 1.
True?
Ta có :
\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)
\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)
\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)
\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)
\(\Rightarrow P\ge\frac{3}{2}\)
Dấu = xảy ra khi a=b=c=1
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Dễ tính đc
\(C=\frac{a^2}{b-1}+\frac{b^2}{c-1}\ge2\sqrt{\frac{a^2b^2}{\left(a-1\right)\left(b-1\right)}}\)
Lại có
\(\frac{a^2}{1\left(a-1\right)}\ge\frac{a^2}{\left(\frac{a-1+1}{2}\right)^2}=4\)
lm tương tự ta đc min