K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Trả lời được mình sẽ kích 

20 tháng 9 2019

ta có:

A = {x\(\in\) R; -5 \(\le\) x < 7}

\(\Rightarrow\) A = [-5;7)

\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))

Đáp án: D

27 tháng 9 2019

B

NV
15 tháng 5 2020

\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)

7 tháng 11 2019

a/ ĐKXĐ: \(x\ne-1\)

Giả sử x1> x2

\(\Rightarrow f\left(x_1\right)=\frac{x_1}{x_1+1};f\left(x_2\right)=\frac{x_2}{x_2+1}\)

\(f\left(x_1\right)-f\left(x_2\right)=\frac{x_1}{x_1+1}-\frac{x_2}{x_2+1}\)

\(=\frac{x_1x_2+x_1-x_1x_2-x_2}{\left(x_1+1\right)\left(x_2+2\right)}=\frac{x_1-x_2}{\left(x_1+1\right)\left(x_2+1\right)}\)

Xét trên khoảng \(\left(-\infty;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+1>0\\x_2+1>0\end{matrix}\right.\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(x_1>x_2\Rightarrow x_1-x_2>0\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;1\right)\)

làm tương tự trên khoảng \(\left(-1;+\infty\right)\)

b/ \(ĐKXĐ:x\ne2\)

Giả sử x1> x2

\(f\left(x_1\right)-f\left(x_2\right)=\frac{2x_1+3}{2-x_1}-\frac{2x_2+3}{2-x_2}\)

\(=\frac{4x_1-2x_1x_2+6-3x_2-4x_2+2x_1x_2-6+3x_1}{\left(2-x_1\right)\left(2-x_2\right)}\)

\(=\frac{7x_1-7x_2}{\left(2-x_1\right)\left(2-x_2\right)}\)

Xét trên khoảng \(\left(-\infty;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2-x_1>0\\2-x_2>0\end{matrix}\right.\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)

\(x_1>x_2\Rightarrow7x_1-7x_2>0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;2\right)\)

làm tương tự trên \(\left(2;+\infty\right)\)

c/ Có \(-\frac{b}{2a}=-1\)

Mà a=1>0 => hàm số đồng biến trên \(\left(-1;+\infty\right)\) , nghịch biến trên \(\left(-\infty;-1\right)\)

d/ \(-\frac{b}{2a}=1\)

Mà a= -1>0 => hàm số đồng biến trên \(\left(-\infty;1\right)\) , nghịch biến trên \(\left(1;+\infty\right)\)

NV
15 tháng 5 2020

Để BPT vô nghiệm

\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)\le0\)

\(\Leftrightarrow m^2-4m-12\le0\)

\(\Rightarrow-6\le m\le2\)

Đáp án C

18 tháng 9 2020

kệ mày

19 tháng 9 2020

tôi ko trả lời được vì tôi lớp 6 thôi

NV
15 tháng 5 2020

ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)

\(\Leftrightarrow4x-3>0\)

\(\Rightarrow x>\frac{3}{4}\)

\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)

Chẳng đáp án nào đúng cả :)

NV
28 tháng 9 2020

a/ \(\Leftrightarrow\left[{}\begin{matrix}a>1\\\frac{a+1}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>1\\a< -3\end{matrix}\right.\)

b/ \(\left(-\infty;5\right)\cup\left(-3;+\infty\right)=R\) nên với mọi a thì \(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;5\right)\cup\left(-3;+\infty\right)\)

26 tháng 7 2017

a/ A = (3;\(+\infty\)), B=[0;4]

A \(\cap\) B= (3;4)

A\(\cup\) B=[0;+\(\infty\))

A\B= (4;\(+\infty\))

B\A= [0;3]

b/ A=(\(-\infty\);4], B=(2;\(+\infty\))

A\(\cap\)B=(2;4]

A\(\cup\)B= R

A\B= (\(-\infty\);2]

B\A=(4;\(+\infty\))

c/ A=[0;4] , B=(\(-\infty\);2]

A\(\cap\)B= [0;2)

\(A\cup B\) = (\(-\infty\);4]

A\ B=[2;4]

B\A=(\(-\infty\);0)