Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{6}{18}+\dfrac{3}{18}+\dfrac{2}{18}+\dfrac{1}{18}=\dfrac{15}{18}=\dfrac{5}{6}\)
b: \(=\dfrac{7}{4}-\dfrac{5}{4}-\dfrac{2}{4}=0\)
c: \(=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
=1/2-1/10=4/10=2/5
A=1/15-1/16+1/16-1/17+...+1/2016-1/2017
A=1/15-1/2017
A=2002/30255
C=1/3[3/5.8+3/8.11+...+3/101.104]
C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]
C=1/3[1/5-1/104]
C=1/3.99/520
C=33/520
Giải:
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
Vậy ...
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
=\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
=\(\dfrac{1}{3}-\dfrac{1}{10}\)
=\(\dfrac{7}{30}\)
c) gọi biểu thức là S = 2 + 2\(^2+2^3+.....+2^{50}\)
2S=2\(^2+2^3+2^4+......+2^{50}+2^{51}\)
\(2S-S=S=2^{51}-2\)
b) \(1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\)
= \(2+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^9}\)
2S-S=S=(\(2+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^9}\))-( \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\))
bạn tự tìm S nhé
mink làm được như thế đó, phần a mink không muốn nhấn mỏi tay bạn ạ, đừng nghĩ mink ko biết làm nha
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{199}\)
\(A=\dfrac{199}{597}-\dfrac{3}{597}=\dfrac{196}{597}\)
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{197.199}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{199-197}{197.199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{999}\)
\(A=\dfrac{196}{697}\)
\(B=1+2+4+8+16+...+512+1024\)
\(2B=2+4+8+32+...+1024+2048\)
\(B=\left(2+4+8+...+2048\right)-\left(1+2+4+...+1024\right)\)
\(B=2048-1\)
\(B=2047\)
a: \(\Leftrightarrow x^2=\dfrac{-5}{2}\cdot\dfrac{-10}{9}=\dfrac{50}{18}=\dfrac{25}{9}\)
=>x=5/3hoặc x=-5/3
c: \(\Leftrightarrow4\left(x-\dfrac{5}{8}\right)=\dfrac{1}{4}+\dfrac{3}{4}=1\)
=>x-5/8=1/4
hay x=2/8+5/8=7/8
d: \(\Leftrightarrow\left|x-3\right|=\dfrac{2}{5}+\dfrac{3}{5}=1\)
=>x-3=1 hoặc x-3=-1
=>x=4 hoặc x=2
e: =>1-1/2x=-3
=>1/2x=4
hay x=8
Số số hạng là 10-1+1=10(số)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
=>\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
=>\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)
=>\(2A-A=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{10}}\)
=>\(A=1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)
\(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{4}\right)+...+\left(x+\dfrac{1}{1024}\right)=1\)
=>\(\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)=1\)
=>\(10x+\dfrac{1023}{1024}=1\)
=>\(10x=\dfrac{1}{2024}\)
=>\(x=\dfrac{1}{20240}\)
Hầu như lúc nào mik hỏi lên đều là bn lm trc tiên lun á Thịnh¯\_(ツ)_/¯