Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{3}+\frac{13}{35}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{66}{13}\)
\(\text{Vậy }A=\frac{66}{13}\)
\(A=1-\frac{2}{3}+1-\frac{2}{15}+1-\frac{2}{35}+1-\frac{2}{63}+1-\frac{2}{99}+1-\frac{2}{143}\)
\(=1+1+1+1+1+1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}-\frac{2}{143}\)
\(=6-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{65}{13}+\frac{1}{13}\)
\(=\frac{66}{13}\)
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Ta có : D = \(2\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{25}+.....+\frac{1}{n\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{n\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow D=1-\frac{1}{n+1}=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
Vậy D không phải là số nguyên (đpcm)
\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}\right)\)
\(D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n\left(n+2\right)}\)
\(D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)
\(D=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{\left(n+2\right)-n}{n\left(n+2\right)}\)
\(D=\frac{3}{1.3}-\frac{1}{1.3}+\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{\left(n+2\right)}{n\left(n+2\right)}-\frac{n}{n\left(n+2\right)}\)
\(D=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(D=\frac{1}{1}-\frac{1}{n+2}\)
\(D=\frac{n+2}{n+2}-\frac{1}{n+2}\)
\(D=\frac{n+2-1}{n+2}\)
\(D=\frac{n+1}{n+2}\Rightarrow D\notin Z\left(dpcm\right)\)
Bn tham khảo nhé:
Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath
~ rất vui vì giúp đc bn ~
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(\Rightarrow3x-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\frac{98}{99}=0\)
\(\Rightarrow3x=0+\frac{98}{99}\)
\(\Rightarrow3x=\frac{98}{99}\)
\(\Rightarrow x=\frac{98}{99}:3\)
\(\Rightarrow x=\frac{98}{297}\)
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(2\left(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}\right)=2.0\)
\(6x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}=0\)
\(6x-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=0\)
\(6x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(6x-\left(1-\frac{1}{11}\right)=0\)
\(6x-\frac{10}{11}=0\)
\(6x=\frac{10}{11}\)
\(x=\frac{5}{33}\)
Cho A chứng minh B, kì vậy ?
Ta có: \(A=\frac{3-2}{3}+\frac{15-2}{15}+\frac{35-2}{35}+\frac{63-2}{63}+\frac{99-2}{99}+\frac{143-2}{143}+\frac{195-2}{195}\)
\(A=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)+\left(1-\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(A=7-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=7-\left(1-\frac{1}{15}\right)=7-1+\frac{1}{15}=6\frac{1}{15}\)không là số nguyên