Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)
nên \(\frac{17}{19}< 1< \frac{19}{17}\)
hay \(\frac{17}{19}< \frac{19}{17}\)
b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)
Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)
\(A=\frac{54.107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)
\(\Leftrightarrow A=1\)
\(B=\frac{135.269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)
\(\Leftrightarrow B=1\)
Vì 1 = 1 nên A =B
A= (54.107-53)/(53.107+54)
= (53+1).107-53 / 53.107+54
=53.107+107-53 / 53.107+54
=53.107+54 / 54.107 + 54
=1
B= 135.269-133 / 134.269+135
= (134+1).269-133 / 134.269+135
= 134.269+269-133 / 134.269+135
=134.269+136 / 134.269+135
=134.269+135/ 134.269+135 + 1/134.269+135
=1 + 1/134.269+135 >1=A
\(A=\frac{54.107-53}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}>1\)
\(A=\frac{54.107-53}{53.107+54}<\frac{135.269-133}{134.269+135}\)
\(A=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)
\(B=\frac{135\cdot268-133}{134\cdot269+135}=\frac{\left(134+1\right)\cdot268-133}{134\cdot269+135}=\frac{134\cdot268+268-133}{34\cdot269+135}=\frac{134\cdot268+135}{134\cdot269+135}=1\)
Vì 1=1 nên A=B
bài 2
a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54
<=>
\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1
Bài 1 :
\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(2n+2-2n-3⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)
Do đó :
\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
bạn gạch các số giống nhau ở mỗi phân số rồi so sánh:
A= bạn bỏ 54, 53 và 107 (bỏ hết) thì còn 1
b= bạn gạch bỏ 135, 269 thì còn 133 và 134
1 vs\(\frac{133}{134}\)(133;134 1>\(\frac{133}{134}\)
=3 mình nghĩ z
\(A=\frac{54.107-53}{53.107+107-53}=\frac{54.107-53}{54.107-53}=1\)
\(B=\frac{135.269-133}{134.269+269-134}=\frac{135.269-133}{135.269-134}\)
ta dễ dàng thấy \(-133>-134\Leftrightarrow135.269-133>135.269-134\)
\(\Leftrightarrow\frac{135.269-133}{135.269-134}>1\)
\(\Leftrightarrow B>A\)
\(a)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~