Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-5+5^2-5^3+...+5^{58}-5^{59}\)
\(5.S=5-5^2+5^3-5^4+...+5^{59}-5^{60}\)
\(5.S-S=1-5^{60}\)
\(4.S=1-5^{60}\)
\(S=\frac{1-5^{60}}{4}\)
Vậy\(S=\frac{1-5^{60}}{4}\)
\(A=5+5^2+5^3+5^4+...+5^{39}+5^{40}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{39}+5^{40}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{39}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{39}\right)⋮6\)
Suy ra \(A⋮3,A⋮2\).
S = 1 + 5 + 5^2 + 5^3 + ... + 5^2015.
S = (1 + 5 + 5^2 + 5^3) + (5^4 + 5^5 + 5^6 + 5^7) + .. + (5^2012 + 5^2013 + 5^2014 + 5^2015).
S = (1 + 5 + 5^2 + 5^3) + 5^4(1 + 5 + 5^2 + 5^3) + ... + 5^2012(1 + 5 + 5^2 + 5^3).
S = 156 + 5^4.156 + ... + 5^2012.156.
S= 156.(1 + 5^4 + ... + 5^2012).
Vì 156 chia hết cho 13 => 156.(1 + 5^4 + ... + 5^2012) chia hết cho 13 => S chia hết cho 13.
S có 2016 số hạng chia thành 1008 nhóm mỗi nhóm có 2 số hạng
S=(1+52)+(5+53)+...+(52013+52015)
S=26+5(1+52)+...+52013(1+52)
S=2.13+5.2.13+...+52013.2.13
S=13.(2+5.2+...+52013.2) chia hết cho 13
=> S chia hết cho 13
các bn giúp mk nha mk đang rất cần ai trả lwofi đầu tiên và chính xác mk tích cho
Cách này cũng đúng nhưng có cách khác nhanh hơn
S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....
Gộp 4 số liên tiếp lại rồi C/M
Chúc học tốt
ta có: S= 1 + 5 + 5^2 + 5^3 + .......+ 5^2015
=> S=(1+5+5^2+5^3)+(5^4+5^4+5^6+5^7)+.........+(5^2012+5^2013+5^2014+5^2015)
=> S=1.(1+5+5^2+5^3)+5^4.(1+5+5^2+5^3)+..........+5^2012.(1+5+5^2+5^3)
=>S=1.156+5^4.156+.........+5^2012.156
=>S=156.(1+5^4+.......+5^2012)
=>S=13.12.(1+5^4+.......+5^2012) chia hết cho 13
vậy S chia hết cho 13. ( đpcm)
CHÚC CÁC BẠN HỌC GIỎI.