Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)
\(\Leftrightarrow\left[\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}+1}{x\sqrt{x}-1}\right].\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\left[\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\right].\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+1-2\sqrt{x}}{x\sqrt{x}-1}.\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{x\sqrt{x}-1}.\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)2}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{3\sqrt{x}+1}{1-x}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
\(P=\left(x-\dfrac{x-1-x}{x-1}\right):\dfrac{1}{x+1}\)
\(=\left(x+\dfrac{1}{x-1}\right)\cdot\left(x+1\right)\)
\(=\dfrac{x^2-x+1}{x-1}\cdot\left(x+1\right)=\dfrac{x^3+1}{x-1}\)