Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Ủng hộ mk nha !!! ^_^
Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Mình chỉ làm cho bạn câu d và e thôi
d) ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....... +1/99 - 1/100 ) . (x - 3)=1
( 1 - 1/100 ) . (x - 3 )=1
99/100.(x -3)=1
x - 3 = 1:99/100
x - 3 =100/99
x = 100/99 + 3
x = 397/99
e) (1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +.....+1/99 - 1/101 ) . (x+2) =3/101
(1/2 . ( 1 - 1/101 ).(x+2)=3/101
(1/2 . 100/101 ) . (x + 2) =3/101
100/202 . ( x + 2 )= 3/101
50/101 . (x + 2 ) = 3/101
x + 2 = 3/101 :50/101
x+2=3/50
x =3/50-2
x= -97/100
Ta có 1/1.2-1/2.3=2/1.2.3;1/2.3-1/3.4=2/2.3.4 .....1/98.99-1/99.100=2/98.99.100 2A=2/1.2.3+2/2.3.4+....+2/98.99.100 = 1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100 = 1/2-1/99.100 = 4949/9900 A =4949/19800
\(B=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(B=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(B=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(B=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{22}{45}\) vậy
\(\frac{11}{45}.x=\frac{22}{45}\)
\(x=\frac{22}{45}\div\frac{11}{45}=2\)
vậy suy ra x =2
mình chắc chắn 100% luôn đó, cái này ở trong violympic toán 7 vòng 12 phải ko
B = 1/1 x 2 x 3 + 1/2 x 3 x 4 + ... + 1/98 x 99 x 100 B = 1 - 1/2 + 1/2 + 1/2 - 1/3 + 1/3 + ... + 1/98 + 1/99 -1/100 B = 1 1/100 B = 99/100
\(Q=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(Q=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)
\(Q=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{100.100}{99.101}\)
\(Q=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)
\(Q=100.\frac{2}{101}\)
\(Q=\frac{200}{101}\)
\(Q=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(Q=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{100.100}{99.101}\)
\(Q=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)
\(Q=100.\frac{2}{101}\)
\(Q=\frac{200}{101}\)