Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y-x+1\right)^2+\left(y+2\right)^2=0\\ \)
\(\Rightarrow\hept{\begin{cases}y=-2\\x=-1\end{cases}\Rightarrow\frac{3x^2y+1}{5xy}}=\frac{-6+1}{10}=-\frac{1}{2}\)
Ta có: A = x2 + 2x + y2 - 4y - 4 = (x2 + 2x + 1) + (y2 - 4y + 4) - 9 = (x + 1)2 + (y - 2)2 - 9
Ta luôn có: (x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (x + 1)2 + (y - 2)2 - 9 \(\ge\)-9 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy Min của A = -9 tại x = -1 và y = 2
\(x^3-4x^2-8x+8\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(8x-8\right)\)
\(\Leftrightarrow x^2\left(x-4\right)-4\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-4\right)\)
\(\frac{3x^2-2x+1}{3}=0\)
mà \(3\ne0\Rightarrow3x^2-2x+1=0\)
\(\Rightarrow\left(3x-2\right)x=-1\)
TH1:3x-2=1 và x=-1
thay vào ta có:-3-2=1(vô lý)
TH2:3x-2=-1 và x=1
thay vào ta có:3-2=-1(vô lý)
Vậy ko có x thỏa mãn