K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41

⇒ y = {0; ±1; ±2; ±3} 

Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy) 

 Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒  x = −1

                                                         x = −2

- Với y=-1............................ bạn làm tương tự

3 tháng 7 2021

Ta có: 2x2 + 2xy - x + y = 66

<=> (x + y)2 + x2 - y2 - (x - y) = 66

<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1 + x - y) = 65

<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)

Lập bảng: 

x + y - 1  1 5 13 65
 2x + 1 65 13 5 1
  x 32 6 2 0
  y -30 (ktm) 0 12 66

Vậy ...

1 tháng 6 2019

\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)

Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)

Với \(m\le3\), theo hệ thức Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)

Vì \(x_1^3+x_2^3< 100\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)

\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)

\(\Leftrightarrow14-2m-m-1< 25\)

\(\Leftrightarrow13-3m< 25\)

\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)

Vậy \(-4< m\le3\)

nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3