Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)
\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)
c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)
Bài 2a
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm
-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm
Áp dụng định lí Pytago của tam giác ABH vuông tại H
\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm
Bài 2c
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức :
\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm
a)\(\dfrac{2}{3}\sqrt{81}-\dfrac{1}{2}\sqrt{16}=\dfrac{2}{3}.9-\dfrac{1}{2}.4=6+2=8\)
b)\(0,5\sqrt{0,04}+5\sqrt{0,36}=0,5.0,2+5.0,6=0,1+3=3,1\)
c)\(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-13\right)^2}=\sqrt{5}-3+\sqrt{5}-13=2\sqrt{5}-16\)
Câu a em nhầm dấu - thành + ở cuối. Kết quả đúng là 6-2=4
Vì mỗi phần tử ở 1 tập hợp đều chỉ xuất hiện 1 lần mà ở tập hợp A lại xuất hiện 4 lần lên 4
=> Tập hợp A = { 1 }
Tập hợp A là tập hợp của con của tập hợp B
Vì phần tử ở tập hợp A đều thuộc tập hợp B
=> A là tập hợp con của B
... Cho em thắc mắc ạ, em không tìm đọc ở đâu có ghi rằng mỗi phần tử ở 1 tập hợp đều chỉ được phép xuất hiện 1 lần.
Nếu theo ý thầy thì đó là dạng tập hợp tổng quát.
Vậy ta phải kết luận là tập hợp tổng quát của A là A1 = { 1 } là tập con của B mới đúng chứ ạ.
Còn A có đến tận 4 số 1, trong khi B chỉ có 1 số 1, nếu thế bản chất là số lượng phần tử số 1 của A lớn hơn số lượng phần tử số 1 của B vậy A không thể là tập con của B ạ.
Khi vẽ ra sơ đồ ta sẽ thấy ngay ạ...
Mong thầy giải đáp giúp ạ
2 3 4 1 1 1 1