Cho Tam giác ABC vuông tại A biết AB=2cm AC=5cm đường cao AH tính BH HC AH
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)

Hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)

\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=2^2+5^2=29\)

\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)

30 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=4+25=29\Rightarrow BC=\sqrt{29}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{10}{\sqrt{29}}=\frac{10\sqrt{29}}{29}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{4}{\sqrt{29}}=\frac{4\sqrt{29}}{29}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{25}{\sqrt{29}}=\frac{25\sqrt{29}}{29}\)cm 

16 tháng 12 2021

\(AH=\sqrt{21}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC 

=>HB*HC=4

BH+CH=5

=>BH=5-CH

HB*HC=4

=>HC(5-CH)=4

=>5HC-HC^2-4=0

=>HC^2-5HC+4=0

=>HC=1cm hoặc HC=4cm

TH1: HC=1cm

=>HB=4cm

\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)

TH2: HC=4cm

=>HB=1cm

\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)

Ta có: BH-HC=5(gt)

mà BH+CH=15

nên 2BH=20

hay BH=10

Suy ra: HC=5

\(\Leftrightarrow AH=\sqrt{10\cdot5}=5\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{\left(5\sqrt{2}\right)^2+10^2}=5\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{15^2-150}=5\sqrt{3}\left(cm\right)\)