K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\)N*)

Ta có:

\(A=\frac{3^{123}+1}{3^{125}+1}< \frac{3^{123}+1+2}{3^{125}+1+2}\)

\(A< \frac{3^{123}+3}{3^{125}+3}\)

\(A< \frac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\)

\(A< \frac{3^{122}+1}{3^{124}+1}=B\)

=> A < B

28 tháng 9 2016

\(9A=\frac{3^{125}+9}{3^{125}+1}=1+\frac{8}{3^{125}+1}\)

\(9B=\frac{3^{124}+9}{3^{124}+1}=1+\frac{8}{3^{124}+1}\)

Mà 3^125+1>3^124+1         =>\(\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)

Nên A<B

29 tháng 9 2016

Đề đúng là \(B=\frac{3^{122}+1}{3^{124}+1}\)nhé .

Ta có :

\(9A=9.\left(\frac{3^{123}+1}{3^{125}+1}\right)=\frac{3^{125}+9}{3^{125}+1}\)

\(=1+\frac{8}{3^{125}+1}\)

\(9B=9.\left(\frac{3^{122}+1}{3^{124}+1}\right)=\frac{3^{124}+9}{3^{124}+1}\)

\(=1+\frac{8}{3^{124}+1}\)

Dễ thấy \(3^{124}+1< 3^{125}+1\)

\(\Leftrightarrow\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)

\(\Leftrightarrow\frac{8}{3^{125}+1}+1< \frac{8}{3^{124}+1}+1\)

\(\Leftrightarrow A< B\)

Vậy....

22 tháng 1 2020
https://i.imgur.com/SBC97Yo.jpg
19 tháng 7 2017

\(A=1+3+3^2+3^3+...+3^{2016}\)

\(A=1+3\left(1+3^2+...+3^{2015}\right)\)

\(A=1+3\left(A-3^{2016}\right)\)

\(A=1+3A-3^{2017}\)

\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)

\(A< B\)

29 tháng 7 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}\)

\(A=\frac{1-\frac{1}{3^{99}}}{2}\)

31 tháng 7 2017

Ta đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Ta so sánh giữa A và C.

\(\frac{1}{3}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};....;\frac{1}{3^{99}}< \frac{1}{99.100}\Leftrightarrow A< C\)( 1 )

 \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Mà \(\frac{99}{100}< \frac{1}{2}\Rightarrow C< B\)( 2 )

Từ ( 1 ) và ( 2 )

 \(\Rightarrow A< C< B\Leftrightarrow A< B\)