Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
`A(x) + B(x) = 2x - 4x^2 + 1 + x^3 - 4x^2 + 5 - 2x`
`= x^3 - ( 4x^2 + 4x^2 ) + ( 2x - 2x ) + ( 1+ 5 )`
`= x^3 - 8x^2 + 6`
__________________________________________________________
`b)`
`P(x) + B(x) = A(x)`
`=>P(x) = A(x) - B(x)`
`=>P(x) = 2x - 4x^2 + 1 + x^3 + 4x^2 - 5 + 2x`
`=>P(x) = x^3 + ( -4x^2 + 4x^2 ) + ( 2x + 2x ) + ( 1 - 5 )`
`=>P(x) = x^3 + 4x - 4`
a) \(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(\Rightarrow\left(\frac{3}{5}-\frac{2}{3}-1\right).x=\frac{-5}{21}:\frac{1}{7}=\frac{-5}{3}\)
\(\Rightarrow\frac{-16}{15}.x=\frac{-5}{3}\Rightarrow x=\frac{-5}{3}:\frac{-16}{15}=\frac{25}{16}\)
b) \(\left(x-\frac{1}{4}\right)^2=\frac{1}{36}\)
\(\Rightarrow\left(x-\frac{1}{4}\right)^2=\left(±\frac{1}{6}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{4}=\frac{1}{6}\\x-\frac{1}{4}=\frac{-1}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{12}\\x=\frac{1}{12}\end{cases}}\)
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...