Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
AB,BC,AC tỉ lệ với 4,7,5 ⇔AB4=BC7=CA5(∗)
a) Sử dụng công thức đường phân giác kết hợp với (∗) ta có:
MCBM=ACAB=54
⇒MCBM+MC=54+5⇔MCBC=59
⇒MC=59BC=59.18=10 (cm)
b) Sử dụng công thức đường phân giác kết hợp với (∗) ta có:
NCNA=BCAB=74⇔NC7=NA4
Áp dụng tính chất dãy tỉ số bằng nhau:
NC+NA7+4=NC7=NA4=NC−NA7−4
⇔AC11=33=1⇒AC=11 (cm)
c)
Vì AO là phân giác góc PAC, BO là phân giác góc PBC nên áp dụng công thức đường phân giác:
OPOC=APAC=BPBC
AD tính chất dãy tỉ số bằng nhau:
OPOC=APAC=BPBC=AP+BPAC+BC=ABAC+BC
Theo (∗)⇒AC=54AB;BC=74AB
OPOC=ABAC+BC=AB54AB+74AB=AB3AB=13
d) Áp dụng công thức đường phân giác:
{MBMC=ABACNCNA=BCABPAPB=ACBC⇒MBMC.NCNA.PAPB=ABAC.BCAB.ACBC=1
(đpcm)
Chứng minh 1AM+1BN+1CP>1AB+1BC+1AC
Ta có:
SABM+SAMC=SABC
⇔MH.AB2+MK.AC2=CL.AB2
⇔AB.sinA2.AM+sinA2.AM.AC=sinA.AC.AB
⇔AM=sinA.AB.ACsinA2.AB+sinA2.AC=2sinA2cosA2.AB.ACsinA2.AB+sinA2.AC
⇔AM=2cosA2.AB.ACAB+AC
⇔1AM=AB+AC2AB.ACcosA2=12cosA2(1AB+1AC)
Tương tự: 1BN=12cosB2(1BA+1BC)
1CP=12cosC2(1CB+1CA)
Cộng theo vế:
1AM+1BN+1CP=12cosA2(1AB+1AC)+12cosB2(1BA+1BC)+12cosC2(1CA+1CB)
>12(1AB+1AC)+12(1BC+1AC)+12(1CB+1CA) (do cosα≤1 nhưng dấu bằng không xảy ra dokhông thể xảy ra đồng thời TH cosA2=cosB2=cosC2=1 )
⇔1AM+1BN+1CP>1AB+1BC+1CA
Ta có đpcm.
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)- \left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy : Tập nghiệm của PT là S={-1;-4}
#H
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)-\left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left[\left(x+7\right)-\left(-2x-5\right)\right]=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy tập nghiệm của pt \(S=\left\{-1;-4\right\}\)
\(\left(3x+12\right)\left(3x-3\right)=\left(3x+12\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3\right)-\left(3x+12\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3-4x+5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(-x+2\right)=0\Leftrightarrow x=-4;x=2\)
Vậy tập nghiệm của phương trình là S = { -4 ; 2 }
( 3x + 12 )( 3x - 3 ) = ( 3x + 12 )( 4x - 5 )
<=> 9( x + 4 )( x - 1 ) - 3( x + 4 )( 4x - 5 ) = 0
<=> 3( x + 4 )[ 3( x - 1 ) - ( 4x - 5 ) ] = 0
<=> 3( x + 4 )( 3x - 3 - 4x + 5 ) = 0
<=> 3( x + 4 )( 2 - x ) = 0
<=> x = -4 hoặc x = 2
Vậy phương trình có tập nghiệm S = { -4 ; 2 }
\(x^2-6x+5=0\Leftrightarrow x^2-5x-x+5=0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\Leftrightarrow x=1;x=5\)
Vậy tập nghiệm phương trình là S = { 1 ; 5 }
x2 - 6x + 5 = 0 ( vầy hả ? )
<=> x2 - 5x - x + 5 = 0
<=> x( x - 5 ) - ( x - 5 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
Vậy phương trình có tập nghiệm S = { 5 ; 1 }
Sửa đề : \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2^2}{4x^2-2x}\)
\(=\frac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\frac{3x-4}{2x\left(2x-1\right)}\)
\(=\frac{2x-1-6x+3x+6x^2-4x+3x-4}{2x\left(2x-1\right)}\)
\(=\frac{-2x+6x^2-5}{2x\left(2x-1\right)}\)
Thay x = 1/234 vào tính là ra giá trị biểu thức nhé !!!