K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Nếu n là lẻ thì n + 5 luôn chẵn  ( n + 2 ) . ( n + 5 ) là số chẵn ( thỏa mãn )

Nếu n là chẵn thì n + 2 luôn chẵn  ( n + 2 ) . ( n + 5 ) là số chẵn ( thỏa mãn )

Vậy với mọi số tự nhiên n thì ( n + 2 ) . ( n + 5 ) là 1 số chẵn ( ĐPCM )

22 tháng 4 2018
TH1: voi n la so chan thi n+2 la so chan va n+5 la so le ma so chan nhan vs so le ra so chan =>(n+2).(n+5)la so chan TH2: Voi n la so le thi n+2 la so le va n+5 la so chan ma so chan nhan vs so le ra so chan =>(n+2).(n+5) la so chan
4 tháng 2 2019

Áp dụng tính chất:chẵn ± lẻ = lẻ

Ta có:\(A+B=\left(5x+y+1\right)+\left(3x-y+4\right)\)

\(=\left(5x+3y\right)+\left(y-y\right)+\left(1+4\right)\)

\(=8x+5\)vì x,y là số tự nhiên.

Suy ra một trong 2 số A or B là số chẵn.

Giả sử A là số chẵn.

\(\Rightarrow A\)có dạng \(2k\)với \(k\inℕ\)

Áp dụng tính chất chẵn × lẻ = chẵn hoặc chẵn × chẵn = chẵn \(\Rightarrow A.B=2k\cdot B\)luôn luôn chẵn.

\(\Rightarrowđpcm\)

1 tháng 2 2016

Chứng minh ra

16 tháng 10 2015

xét n chẵn=>n+4 chẵn

=>(n+1)(n+4) chia hết cho 2      (1)

xét n lẻ=>n+1 chẵn

=>(n+1)(n+4) chia hết cho 2      (2)

từ (1);(2)=>đpcm

8 tháng 2 2016

nếu n ko là số chẵn => n \(\ne2k\left(k\exists\right)N\)=> n^2\(^{\left(2k\right)^2=>}kolàsốchẵn\)

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

30 tháng 3 2020

Ghhg fhgcgh

2 tháng 4 2019

Vì \(n\ge2\) nên \(2^n⋮4\)

=> \(2^{2^n}\) có dạng \(2^{4k}\) (\(k\in N\)sao)

Mà \(2^{4k}=16^k\)

Vì một số có tận cùng là 6 lũy thùa với bất kì số tự nhiên khác không đều cho ta số có tận cùng là 6 

=> \(2^{2^n}\)có tận cùng là 6 => \(2^{2^n}+1\)có tận cùng là 7.

T**k mik nhé!

Hok tốt!

23 tháng 10 2016

Ta có:

\(\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)=\frac{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)}{1.2.3...n}\)

\(=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{1.2.3...n}=\frac{1.3.5...\left(2n-1\right).2^n.\left(1.2.3...n\right)}{1.2.3...n}\)

\(=1.3.5...\left(2n-1\right).2^n⋮2^n\left(đpcm\right)\)

Lúc này dễ dàng tìm được thương của phép chia là 1.3.5...(2n - 1)