Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: EF // BD (gt)
BF // ED (gt)
Suy ra EF = BD; BF = DE (t/c đoạn chắn)
Trên AB lấy K sao cho AF = BK
ΔAFEΔAFE và ΔKBDΔKBD có:
AF = BK (cách vẽ)
AFE = KBD (đồng vị)
EF = BD (cmt)
Do đó, ΔAFE=ΔKBD(c.g.c)ΔAFE=ΔKBD(c.g.c)
=> AE = KD (2 cạnh t/ứ)
= BF = ED (theo gt AE = BF, theo cmt BF = ED)
Kẻ DM⊥AB;DN⊥ACDM⊥AB;DN⊥AC
ΔΔ DMK vuông tại M và ΔΔ DNE vuông tại N có:
DK = DE (cmt)
MKD = NED (cùng đồng vị với FAE)
Do đó, ΔDMK=ΔDNEΔDMK=ΔDNE (cạnh huyền - góc nhọn)
=> DM = DN (2 cạnh t/ứ)
=> D cách đều AB và AC (đpcm)
thông cảm nha mk llafm vội nên ko để ý nên ko chác chắn bài
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
Vào đâytham khảo nè :
https://hoc24.vn/hoi-dap/question/93163.html
1.trong tam giác ADK :
AB=BD (D đối xứng vs A qua B)
N là trung điểm của AK
=>BN là đg trung bình của tam giác ADK
=> BN//DK
=>BN//MK
trong tam giác NBC có:
BN//MK
M là trung điểm của BC
=>NK=KC
mà NK=AN
=>AN=NK=KC
=>2NA=NC
1. ta có AD = BC (gt)
mà DH = BF (gt)
=> AH =FC
xét ▲AHE và ▲FCG, có:
AE = CG (gt)
góc A = góc C (gt)
AH = FC (cmt)
=>▲AHE = ▲FCG (c.g.c)
=>HE = FG (2 cạnh t/ứ)
cmtt : HG = EF
Vậy EFGH là hbh (đpcm)
A B C I H K F E a) Theo gt ta có :
FD // AC => FD // AE ( E \(\in AC\)) ( 1)
DE // AB => DE // AF ( F \(\in AB\) ) (2)
từ (1)(2) \(\Rightarrow AEDF\) là hình bình hành ( theo dấu hiệu nhận biết hình bình 1)
b)
theo a) tao có AEDF là hình bình hành
hình bình hành có 2 đường chéo AD và EF giao nhau tại I
=> I là trung điểm của 2 đường chéo AD và EF ( t/c hình bình hành )
=> \(IF=IE\) hay F đối xứng với E qua I
a)Xét tứ giác AEDF có: DE//AB, DF//AC
\(\Rightarrow\)AEDE là hình bình hành
b) Vì 2 đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường nên IA=ID, IF=IE suy ra E đối xứng với F qua I